Что такое крутящий момент двигателя автомобиля

Простым языком о крутящем моменте

Если внимательно изучить основные характеристики двигателя авто, то можно столкнуться со следующими понятиями:

  • уровень мощности мотора машины, который измеряется в лошадиных силах;
  • крутящий момент мотора машины (измеряется в ньютонометрах);
  • число оборотов, которые мотор машины делает в течение одной минуты.

Подавляющее большинство людей, которые видят значение в 100 или же в 200 л.с. считают, что это хорошо. И, по большому счету, это действительно так. 100 л.с. или же лошадиных сил являются очень хорошими показателями для городских кроссоверов, которые отличаются компактными размерами, или же для мощных хэтчбеков.

Однако такие характеристики как крутящий момент, число оборотов, которые мотор делает в течение одной минуты, являются не менее важными характеристиками мотора. Потому как уровень мощности в 200 л.с. может быть достигнут, только когда мотор автотранспортного средства работает на пределе. От крутящего момента и будет зависеть быстрота разгона транспортного средства.

Допустим, что вы едете на своей машине по автомобильной трассе на большой скорости, включив четвертую или же пятую передачу. Если вдруг дорога станет подниматься, то уровень мощности мотора вашего транспортного средства может просто оказаться недостаточно.

По этой причине вам придется переходить на низкие передачи, уровень мощности мотора, соответственно, от этого будет увеличиваться. Крутящий же момент обеспечивает увеличение уровня мощности мотора автотранспортного средства, помогая активизировать все его силы на то, чтобы преодолеть препятствие.

Это будет зависеть главным образом от конкретной марки транспортного средства. Что касается двигателей дизельного типа, то у них максимальный крутящий момент в подавляющем большинстве случаев наблюдается на трех-четырех тысячах оборотов в течение одной минуты.

Соответственно, у них гораздо лучше динамика разгона. Тем не менее, в плане максимального уровня мощности они очень сильного проигрывают двигателям, которые работают на бензине.

Ну и для того, чтобы читателям было совсем понятно, что представляет собой крутящий момент, расскажем о единицах, в которых он измеряется. Это метры и ньютоны. Это та сила, с которой мощность поступает от поршня на маховик через коленвал. И уже от него на трансмиссию (коробку передач). От скорости движения поршня будет непосредственным образом зависеть скорость движения маховика.

Хотя существуют и такие автотранспортные средства, мотор которых вырабатывает тягу даже при низких оборотах. К таким в частности, можно отнести различного рода трактора, самосвалы, а также внедорожники.

От чего зависит крутящий момент мотора автотранспортного средства

Само собой разумеется, что самые мощные моторы транспортных средств обладают достаточно крупными размерами. Соответственно, если ваше транспортное средство – это малолитражка или же компактный хэтчбек, то у вас не получится ни резко разогнаться, ни «стартануть» с места.

Исходя из этого, на малолитражках двигатель используется только лишь на половину своей максимальной мощности. В то время как мощные транспортные средства способны разгоняться практически с места. При этом отсутствует необходимость в быстром переключении передач.

Еще одним важным параметром, который оказывает самое непосредственное влияние на крутящий момент мотора автотранспортного средства, является его эластичность. Этот параметр показывает соотношение числа оборотов, которое делает мотор в течение одной минуты, и уровня мощности.

Даже на низкой передаче авто может ехать с достаточно высокой скоростью при двигателе, работающем на полную мощность. Это является особенно актуальным при езде по городским улицам, потому как там водителям приходится постоянно притормаживать, разгоняться, а потом снова притормаживать.

При езде по автомобильной трассе это тоже очень выгодно, потому как можно разогнать двигатель транспортного средства до необходимого количества оборотов всего одним нажатием на педаль.

Мощность

Переходим к мощности и лошадиным силам. Мощность – это характеристика выполнения работы, которая измеряется в ваттах или лошадиных силах. 1 кВт = 1,36 л.с. Лошадиная сила – это единица измерения работы, это количество силы, произведенной в единицу времени. 

Откуда взялась эта пресловутая лошадиная сила? Шотландский учёный Джеймс Ватт посчитал, что одна лошадь может выдавать 33000 футов-фунтов (это аналог ньютон-метров) за минуту.  То есть лошадь, применяя 1 лошадиную силу может поднять 330 фунтов на высоту 100 футов за 1 минуту или 33 фунта на тысячу футов за минуту или 1000 фунтов на 33 фута за минуту – это ее работа, это лошадиная сила. 

Откуда взялась лошадиная сила

Как измеряется крутящий момент?

Для этого достаточно взглянуть на техническую документацию своего авто. Но реальные измерения также доступны: необходимо использовать специальные датчики. Они позволят провести статические и динамические измерения.

Измерение заключается в создании ситуации, где двигатель набирает максимальные обороты, затем тормозится: в процессе создается график, демонстрирующий максимальный момент мотора в момент нажатия на тормоз. Сначала показатель будет небольшим, затем будет наблюдаться рост, достижение пика и падение.

СТО должны оснащаться профессиональными тензометрами: все измерения обрабатывает специальное ПО, а результаты отображаются в виде графиков. Основная сложность в измерении КМ – достичь высокой точности показаний. Устаревшие контактные, светотехнические или индукционные тензометры не обеспечивали должной эффективности, поэтому в настоящий момент используются измерители в виде компактного передатчика, закрепляемого на вал: он передает данные на прибор-приемник, предоставляющий данные, не нуждающиеся в обработке.

У кого силы больше?

Величина крутящего момента значительно больше у многоцилиндровых моторов, агрегатов с турбированным и механическим наддувом. Наибольшего же показателя крутящего момента можно достигнуть в дизельных двигателях. Большинство из них могут обеспечить авто повышенную динамику даже при 800 или 1000 оборотах за 60 секунд. Если же есть большое желание приобрести дизельный оборотистый автомобиль с повышенной динамикой, но ввиду каких-то причин на это нет возможности — следует выбирать авто с таким силовым агрегатом, у которого максимальный крутящий момент достигается на меньших оборотах. Подобные автомобили легче поддаются разгону. Иначе придётся «насильно душить» двигатель оборотами, значительно увеличивая при этом расход топлива. Детали при такой езде также быстрее изнашиваются.

Современные разработки в области автопрома указывают на то, что создатели новых моделей всячески пытаются избежать «пропасти» в рамках разгона и сделать его более-менее равномерным на всём диапазоне оборотов. Это все модернизируется, дабы избежать ситуации, в которой величина крутящего момента не способна передать колёсам большую силу тяги. Одним из представителей подобных силовых агрегатов является 6-цилиндровый турбированный двигатель Ауди объёмом 2,7 литра V-образной формы. Мощность двигателя двести пятьдесят лошадиных сил. В диапазоне от 1700 до 4600 он развивает крутящий момент в пределах 350 Н·м. Ещё один немецкий автомобиль, Фольксваген, с турбированным двигателем объёмом 1,8 литра и мощностью в 180 лошадиных сил развивает крутящий момент в 228 Н·м в пределах от 2000 до 5000 оборотов. Несомненно, большое удовольствие приносит езда на подобных авто — невзирая на количество оборотов при нажатии на «газ», железный конь послушно и резво начинает разгоняться. Это приносит удовольствие не только любителям скоростной езды, но и может сделать движение более уверенным при выходе на обгон в нужный момент.

Повышать и «выравнивать» крутящий момент в новых двигателях пытаются несколькими способами:

  • устанавливаются несколько (от трёх до пяти) клапанов на один цилиндр;
  • меняются механизмы распределения газов;
  • впускной тракт двигателя делается меньшей длины;
  • турбинная крыльчатка выполняется из керамики и остаётся возможным изменять угол наклона лопаток.

Все эти манипуляции создателей имеют одну цель — всеми возможными способами совершенствовать и модернизировать процесс насыщения цилиндров. В данных разработках наибольшего успеха достигли специалисты-разработчики компании Сааб. В один из новых своих моторов объёмом 1,6 л была умещена мощность в 225 лошадок, а также крутящий момент в 305 Н·м. Шведские инженеры сумели добиться столь высокого прогресса благодаря изменению вместимости камеры сгорания топлива и уменьшению степени сжатия при различных режимах работы. Этому также способствовали и изменения в системе наддува высокого давления и система промежуточного охлаждения, а также использование четырёх клапанов на один цилиндр.

Мощность и КПД (eta) электродвигателя

Существует прямая связь между мощностью, потребляемой электродвигателем от сети, мощностью на валу электродвигателя и гидравлической мощностью, развиваемой насосом.

При производстве насосов используются следующие обозначения этих трёх различных типов мощности.

P1 (кВт) Входная электрическая мощность насосов – это мощность, которую электродвигатель насоса получает от источника электрического питания. Мощность P! равна мощности P2, разделённой на КПД электродвигателя.

P2 (кВт) Мощность на валу электродвигателя – это мощность, которую электродвигатель передает на вал насоса.

Р3 (кВт) Входная мощность насоса = P2, при условии, что соединительная муфта между валами насоса и электродвигателя не рассеивает энергию.

Р4 (кВт) Гидравлическая мощность насоса.

Какому двигателю отдать предпочтение

Из-за разных типов мотора одна и та же модель может отличаться по показателям мощности мотора и крутящему моменту, при этом разница может быть значительной.

Бензиновый двигатель

Бензиновый двигатель формирует воздушно-топливную смесь, заполняющую цилиндр. Температура внутри него поднимается до примерно 500 градусов. У таких моторов номинальный коэффициент сжатия составляет порядка 9-10, реже 11 единиц. Поэтому, когда происходит впрыск необходимо использование свечей зажигания.

Дизельный двигатель

В цилиндрах работающего на дизеле движка коэффициент сжатия смеси может достигать показателя в 25 единиц, температура – 900 градусов. Поэтому смесь зажигается без использования свечи.

Электродвигатель

https://youtube.com/watch?v=kYuowXDTQDU

Автомобильный трехфазный асинхронный электродвигатель работает по совершенно другим законам, поэтому его мощность и КМ отличаются от традиционных кардинально. Электромотор состоит из ротора и статора, кратность которых позволяет выдавать пиковый КМ (600 Нм) на любой скорости. При этом мощность электродвигателя, например, у Теслы, составляет 416 л. с.

Чтобы ответить на вопрос – дизельный, бензиновый или электродвигатель лучше, надо сначала исключить третий вариант, поскольку электродвигатели пока не так распространены, как первые два типа.

Кроме того, благодаря большему крутящему момент автомобиль, использующийся как грузовой, обладает большей грузоподъемностью за счет двигателя. Особенно если двигатель дизель-генераторный.

Практическая ценность Нм двигателя Вашего авто

Понимая, как вырабатывается крутящий момент на валу мотора, можно использовать эти характеристики в ходе эксплуатации, то есть, на практике. Они позволяют изменить фазы газораспределения, отрегулировать электронный впрыск, применять или не применять турбо наддув и т.д. В дальнейшем это дает возможность не менять скорость движения транспортного средства, но сохранять прежнюю силу тяги на ведущих колесах машины. Эти действия можно выполнить без переключения коробки передач — вот об этом идет речь, когда говорят об «эластичности» силового агрегата внутреннего сгорания.

Водитель может замерить этот показатель на своем автомобиле. Для этого ему нужно двигаться на 4‑й передаче на скорости 60 км/час. Теперь он должен попробовать разогнать машину до 100 км за счет нажатия одной лишь педали акселератора. Чем меньше у него это отнимет времени, тем более эластичным можно считать двигатель

В данном случае число оборотов в минуту уже не имеет такого значения, а важно, какую практическую ценность они представляют при разгоне

Именно такими характеристиками славятся силовые агрегаты, производимые ведущими европейскими автозаводами. У них прекрасная эластичность, которая и обеспечивает ту знаменитую динамику при разгонах, которую давно оценили наши водители. Особенно хорошо проявили себя немецкие автомобили: БМВ, Ауди, Мерседес. Выдаваемый ими крутящий момент дарит наслаждение не только при движении на загородных трассах, но и в условиях забитых городских улиц и пробок, когда оперативный разгон помогает вовремя добраться до места назначения.

На этом будем завершать сегодняшнюю дискуссию. Теперь, я надеюсь, Вы больше знаете о крутящем моменте, который способен вырабатывать бензиновый или дизель-мотор. Заходите почаще на мой блог, чтобы всегда быть в курсе интересных и полезных новостей из области автотематики. На сегодня всем пока, и до новых встреч!

Просмотры:2518

1Нравится

Какие факторы влияют на крутящий момент двигателя

Когда речь идет о максимальном значении крутящего момента двигателя, существует три разных, но взаимосвязанных ограничивающих фактора.

Механические свойства материалов

Во-первых, это механические свойства материалов. Хорошим примером такого подхода к проектированию являются разные серводвигатели.

Более дешевые сервоприводы с более низким крутящим моментом используют пластиковые шестерни, обычно сделанные из нейлона. Производство пластиковых шестеренок недорогое, что делает сервоприводы с нейлоновыми шестеренками более дешевыми в производстве, и, следовательно, их можно дешевле купить. Нейлоновые шестерни также более легкие, по сравнению с металлическими, что является важным фактором для робототехники и летательных аппаратов. Однако если на эти нейлоновые шестерни будет приложен слишком большой крутящий момент, они сломаются.

Сервоприводы с более высоким крутящим моментом содержат металлические шестерни, поэтому они могут выдавать более высокий крутящий момент без поломок.

Материалы, используемые в конструкции двигателя, играют огромную роль в определении того, какой крутящий момент двигатель будет способен создать.

Рисунок 4 – Двигатели изготавливаются из различных материалов, но, как правило, те, что изготовлены из металла, имеют более высокий крутящий момент, чем те, что изготовлены из нейлона или другого пластика.

Максимальное напряжение двигателя

Вторым фактором, влияющим на максимальный крутящий момент двигателя, является максимальное напряжение, на которое рассчитан двигатель. Если вы посмотрите на страницу характеристик любого сервопривода, вы найдете разные значения крутящего момента для разных напряжений. Более высокие напряжения дают двигателю большую мощность для обеспечения более высокого крутящего момента. Тем не менее, двигатель и его схема управления могут принимать ограниченное напряжение из-за возможности перегрева и сгорания. Максимальное напряжение, которое двигатель может принять без сбоев, влияет на величину его максимального крутящего момента.

Рисунок 5 – Максимальное напряжение двигателя указывается в технических характеристиках, представленных производителями. Связь между рабочим напряжением и крутящим моментом.

Тепловыделение двигателя

Это подводит нас к последнему фактору, ограничивающему максимальный крутящий момент двигателя. Поскольку двигатели работают, они генерируют ненужное тепло. Чем тяжелее работает двигатель, тем больше тепла он выделяет.

Для большинства двигателей, используемых в любительских проектах, от двигателей постоянного тока до сервоприводов и шаговых двигателей, создаваемое тепло просто излучается в воздух. У них нет активного охлаждения, как, например, в электромобиле. Следовательно, двигатель ограничен тем, какой крутящий момент (а также скорость) он может генерировать без риска сбоя по температуре.

Для чего нужна коробка передач?

Как становится ясно из написанного выше, двигатель дорожного автомобиля работает по-разному при разных оборотах. На «низах» потребляет мало топлива и плохо тянет, на «верхах» тянет хорошо, но и аппетитом обладает куда большим. Значит, нам нужно управлять оборотами мотора, чтобы получать от него нужную отдачу в зависимости от дорожной ситуации. Как это сделать? Очень просто: переключать передачи. Именно для этого в любой машине есть коробка передач: для регулировки оборотов двигателя, и ни для чего больше!

Сами посудите, в большинстве современных машин, кроме малолитражек, II передача обеспечивает разгон до 90 км/ч. А что такое 90 км/ч? Это средняя скорость движения на скоростных трассах. Да, есть любители погонять по 140-150 км/ч, но их меньше, и с такими скоростями может справиться уже III передача. Однако те же современные коробки делаются пяти-, шести- а то и семиступенчатыми. Вопрос: зачем нужны IV, V и VI передачи, если можно управиться первыми тремя? Как раз для того, чтобы ехать с теми же скоростями, но при более низких оборотах двигателя и с большей экономичностью. А зачем на II передаче разгоняться до 90 км/ч, если можно обойтись экономичной VI передачей? Как раз для работы мотора на высоких обороах и возможности интенсивного ускорения.

Вот и вся наука! Именно поэтому правильно пользоваться тахометром при выборе передачи, а не чем-то еще. Потому что переключаем передачи мы именно для изменения оборотов двигателя, чтобы на любой скорости удерживать обороты двигателя в экономичной зоне и иметь при этом достаточный крутящий момент и тягу.

В следующих статьях я напишу также о том, как правильно переключать передачи, как правильно тормозить на механике и почему опасно движение накатом.

Как это решается в современных автомобилях, и почему производители всё упрощают

при 1500–2000 об/мин и не меняется до максимальных

Казалось бы, проблема решена, но нельзя же без рекламного эффекта. И производители начинают соревнование — кто большую величину момента укажет в характеристиках новой модели. Зачем это знать водителю — непонятно, всё равно автоматическая коробка передач выберет нужный момент на колёсах, который в несколько раз выше, создаваемого мотором, каким бы он ни был. А разгон автомобиля и прочие его способности определяются исключительно максимальной мощностью. Обороты, при которых она достигается, у гражданских автомобилей примерно одинаковые. То есть надо упоминать равномерность распределения момента по оборотам, чтобы под нагрузкой момент не падал даже без переключений, но нет, указывается только абстрактное число Ньютон-метров.

Таблица крутящего момента и мощности

 Марка автомобилямощность, л.с.при об/минкрутящий момент, Нмприведенный момент, Нм
1Alfa Romeo 8C Competizione4507000470470
2Aston Martin DB94776000600514
3Audi A3 Sedan 2.0 TDI1504000320183
4Audi A6 3.0 TDI2044500400257
5Audi RS5 Coupe4508250430507
6Audi S33006200380337
7Audi S43337000441441
8Audi S85206000652559
9Audi Q7 4.2 TDI3273750760407
10Audi R8 4.24207800430479
11Bentley Mulsanne51242001020612
12BMW 330d F302584000560320
13BMW M135i F213205800450373
14BMW M5 F105607000680680
15BMW M550d xDrive F103814400740465
16BMW 750i F014505500650511
17BMW M3 E924208300400474
18BMW X5 M50d E703814400740465
19Bugatti Veyron 16.41001600012501071
20Cadillac Escalade4035700565460
21Chevrolet Camaro ZL15806000754646
22Chevrolet Corvette Z065076300637573
23Citroën C5 V6 HDi 2402403800450244
24Citroën DS5 eHDi 1601603750340182
25Dodge Challenger SRT8 3924706000637546
26Dodge SRT Viper6506150814715
27Ferrari 458 Italia5709000540694
28Ferrari 550 Maranello4807000569569
29Ferrari F12 Berlinetta7408700690858
30Ferrari FF6608000683781
31Ford Explorer 2.0L EcoBoost2435500366288
32Ford Fiesta ST1825700240195
33Ford Focus ST2506000340291
34Ford Kuga 1.6 EcoBoost1825700240195
35Ford Mondeo 2.2 TDCi2003500420210
36Honda Civic Type-R mk82017800193215
37Honda CR-V1907000222222
38Honda S20002407800220245
39Hyundai Santa Fe 2.2 CRDi1973800421229
40Infiniti G37 Sport3337000365365
41Infiniti FX30d2383750550295
42Jaguar XF 3.0 V6 D S2754000600343
43Jaguar XJ 5.0 SC Supersport5106500625580
44Jaguar XKR-S Coupe5506500680631
45Jeep Grand Cherokee 3.0 CRD2504000570326
46Jeep Grand Cherokee SRT84656000624535
47Kia Optima 2.41806000231198
48Kia Sorento 2.2 CRDi1973800421229
49Koenigsegg Agera940690011001084
50Lamborghini Aventador LP700-47008250690813
51Land Rover Discovery 4 5.0 V83756500510474
52Land Rover Discovery 4 SDV62454000600343
53Lexus LF-A5608700480597
54Lexus IS-F4236600505476
55Maserati 3200GT3706250491438
56Maserati Granturismo S4407000490490
57Maybach 575505250900675
58Mazda 6 2.2 SkyActiv-D1754500420270
59Mazda CX-9 Touring AWD2776250366327
60Mclaren F16277500651698
61Mclaren MP4-12C6007000600600
62Mercedes-Benz A 45 AMG3606000450386
63Mercedes-Benz C 250 CDI W2042014200500300
64Mercedes-Benz CLA 2502115500350275
65Mercedes-Benz GL63 AMG5585250759569
66Mercedes-Benz S 600 W2215175000830593
67Mercedes-Benz S 63 AMG W2225855500900707
68Mercedes-Benz SL 65 AMG R23163050001000714
69MINI Cooper SD Countryman1434000305174
70MINI JCW2116000280240
71Mitsubishi Lancer Evolution X2956500422392
72Mitsubishi Outlander 3.02306250291260
73Mitsubishi Pajero 3.2 DI-D2003800441239
74Nissan GT-R R355506400632578
75Nissan Patrol4055800560464
76Opel Astra OPC2805500400314
77Opel Insignia 2.0 CDTI1954000400229
78Opel Insignia OPC3255250435326
79Peugeot 308 2.0 HDI1404000340194
80Peugeot RCZ 200 THP2005800275228
81Porsche 911 Carrera S 9914007400440465
82Porsche 911 Turbo S 9915606750750723
83Porsche Carrera GT6128000590674
84Porsche Cayenne S Diesel3823750850455
85Porsche Panamera Diesel3004000650371
86Range Rover 5.0 Supercharged5106500625580
87Range Rover Sport 4.4 TDV83393500700350
88Renault Clio RS2007100215218
89Renault Megane dCi 1601603750380204
90Rolls-Royce Ghost5705250780585
91Rolls-Royce Wraith6355600800640
92Skoda Fabia RS1806200250221
93Skoda Octavia 2.0 TDI1434000320183
94Subaru Impreza WRX STI3006200350310
95Subaru Legacy Outback 3.62506000335287
96Toyota GT862007000205205
97Toyota RAV41806000233200
98Volkswagen Golf GTI2306200350310
99Volkswagen Touareg 3.0 TDI2044750450305
100Volvo S60 T63045600440352
101Volvo XC60 D52154000420240

← Круиз-контроль
Ксенон →

  • 1
  • 9001

Как рассчитывается мощность двигателя?

Расчет мощности мотора проводится несколькими способами. Самый доступный способ – через крутящий момент. Умножаем крутящий момент на угловую скорость – получаем мощность двигателя.

N_дв=M∙ω=2∙π∙M∙n_дв

где:

N_дв – мощность двигателя, кВт;

M – крутящий момент, Нм;

ω – угловая скорость вращения коленчатого вала, рад/сек;

π – математическая постоянная, равная 3,14;

n_дв – частота вращения двигателя, мин-1.

Мощность рассчитывается и через среднее эффективное давление. Камера сгорания имеет определенный объем. Разогретые газы воздействуют на поршень в цилиндре с определенным давлением. Двигатель вращается с некоторой частотой. Произведение объема двигателя, среднего эффективного давления и частоты вращения, поделенное на 120, и даст теоретическую мощность двигателя в кВт.

N_дв=(V_дв∙P_эфф∙n_дв)/120

где:

V_дв – объем двигателя, см3;

P_эфф – эффективное давление в цилиндрах, МПа;

120 – коэффициент, применяемый для расчета мощности четырехтактного двигателя (у двухтактных ДВС этот коэффициент равен 60).

Для расчета лошадиных сил киловатты умножаем на 0,74.

N_(дв л.с.)=N_дв∙0,74

где:

N_дв л.с. – мощность двигателя в лошадиных силах, л. с.

Другие формулы мощности двигателя используются в реальных расчетах реже. Эти формулы включают в себя специфичные переменные. И чтобы измерить мощность двигателя по другим методикам, нужно знать производительность форсунок или массу потребленного двигателем воздуха.

На практике расчет мощности автопроизводители выполняют эмпирическим способом, то есть замеряют на стенде и строят график зависимости по факту, на основании полученных во время испытаний показателей.

Мощность двигателя – величина непостоянная. Для каждого мотора есть кривая, которая отображает на графике зависимость мощности от частоты вращения коленчатого вала. До определенного пика, примерно до 4-5 тысяч оборотов, мощность растет пропорционально оборотам. Далее идет плавное отставание роста мощности, кривая наклоняется. Примерно к 7-8 тысячам оборотов мощность идет на спад. Сказывается перекрытие клапанов на большой частоте вращения коленвала и падение КПД мотора из-за недостаточно интенсивного газообмена.

Чтобы узнать мощность двигателя, обратитесь к инструкции по эксплуатации авто. В разделе с техническими характеристиками мотора будет указана мощность и обороты, при которых она достигает пикового значения. Если мощность указана киловаттах, чтобы рассчитать лошадиные силы двигателя, воспользуйтесь приведенной выше формулой. В некоторых случаях автопроизводитель предоставляет график, на котором есть зависимость мощности двигателя и крутящего момента от частоты оборотов.

Особенности малооборотистых и высокооборотистых двигателей

Увидев достаточно большое значение мощности двигателя, многие люди считают, что это хорошо, при этом следует обратить внимание на значение оборотов двигателя при максимальном крутящем моменте. Проще говоря если двигатель способен развить максимальную мощность 90 л.с

при оборотах 5 тыс., а тахометр показывает всего 2,5, то в этот момент используется всего половина максимальной мощности.

Также при перемещении с большой скоростью по шоссе на последней передаче при ощутимом уклоне вверх, мощности двигателя может быть недостаточно. Для этого производится переключение на пониженную передачу, чтобы выжать из двигателя большую мощность. В этом случае крутящий момент служит для повышения мощности и активизирует силы мотора для преодоления препятствия.

На бензиновых двигателях пиковый крутящий момент в зависимости от марки достигается при 3500-6000 об/мин. У дизелей этот показатель наступает при 3-4 тыс., следовательно, они обладают лучшей динамикой разгона, но проигрывают бензиновым по максимальной мощности. Поэтому самые мощные и быстрые автомобили оснащают исключительно бензиновым силовым агрегатом на высокооктановом бензине.

Подобная закономерность наблюдается и при сравнении низкооборотистого и высокооборотистого двигателя, работающего на одинаковом топливе. При одинаковом рабочем объеме менее высокооборотистый будет показывать лучшие разгонные и тяговые характеристики, а более высокооборотистый – лучшие скоростные и динамические показатели. При этом имеет значение схожесть параметров трансмиссии – если передаточные соотношения не одинаковы, сравнивать двигатели бессмысленно.

От чего зависит крутящий момент

В любом описании машины или автомобильного двигателя указан крутящий момент на определенных оборотах. Это связано не только с инерционностью поршней, шатунов и коленчатого вала, но и с таким параметром, как аэродинамическое сопротивление. Чем выше обороты двигателя и сильней нажата педаль газа, тем больше воздуха проходит через впускной коллектор и каналы головки блока цилиндров. Это приводит к увеличению скорости движения воздуха, который тоже обладает определенной инерционностью. Поэтому нельзя увеличивать обороты мотора до бесконечности, ведь наступает момент, когда инерционность и вязкость воздуха окажутся настолько велики, что разряжения, создаваемого поршнем, не хватит для заполнения камеры сгорания.

В результате количество (а нередко и соотношение) топливовоздушной смеси окажется недостаточным для дальнейшего увеличения оборотов двигателя и мощность мотора начнет падать. Поэтому максимальный вращающий момент, указанный в справочниках и каталогах, соответствует оборотам, на которых двигатель максимально наполняется воздухом, ведь это обеспечивает наибольшее давление выхлопных газов. Увеличение количества топлива приводит к дальнейшему росту оборотов мотора, но крутящий момент начинает падать. Затем обороты двигателя достигают того значения, когда дальнейший рост оборотов возможет лишь без нагрузки, поэтому мощность мотора начинает снижаться. Поэтому максимальный крутящий момент большинства моторов приходится на средние обороты, а пик мощности на высокие.

Крутящий момент и лошадиная сила

Автолюбители нередко дискутируют друг с другом: чей двигатель мощнее. Но иногда и не представляют при этом, из чего складывается данный параметр. Общепринятый термин «лошадиная сила» был введён изобретателем Джеймсом Уаттом в XVIII веке.  Он придумал его, наблюдая за лошадью, которая была запряжена в поднимающий уголь из шахты механизм. Он рассчитал, что одна лошадь за минуту может поднять 150 кг угля на высоту 30-ти метров. Одна лошадиная сила эквивалентна 735,5 Ватт, или 1 кВт равен 1,36 л.с.

В первую очередь, мощность любого мотора оценивают в лошадиных силах, и лишь потом вспоминают о крутящем моменте. Но эта тяговая характеристика тоже даёт представление о конкретных тягово-динамических возможностях автомобиля. Крутящий момент является показателем работы силового агрегата, а мощность – основным параметром выполнения этой работы. Эти показатели тесно связаны друг с другом. Чем больше производится двигателем лошадиных сил, тем больше и потенциал крутящего момента. Реализуется этот потенциал в реальных условиях через трансмиссию и полуоси машины. Соединение этих элементов вместе и определяет, как именно мощность может переходить в крутящий момент.

Простейший пример – сравнение трактора с гоночной машиной. У гоночного болида лошадиных сил много, но крутящий момент требуется для увеличения скорости через редуктор. Чтобы такая машина двигалась вперёд, надо совсем немного работы, потому что основная часть мощности используется для развития скорости.

Что касается трактора, то у него может быть мотор с таким же рабочим объёмом, который вырабатывает столько же лошадиных сил. Но мощность в этом случае используется не для развития скорости, а для выработки тяги (См. тяговый класс). Для этого она пропускается через многоступенчатую трансмиссию. Поэтому трактор не развивает высоких скоростей, зато он может буксировать большие грузы, пахать и культивировать землю, и т.д.

В двигателях внутреннего сгорания сила передаётся от газов сгорающего топлива поршню, от поршня – передаётся на кривошипный механизм, и далее на коленчатый вал. А коленвал, через трансмиссию и приводы, раскручивает колёса.

Естественно, крутящий момент двигателя не постоянен. Он сильней, когда на плечо действует бо́льшая сила, и слабей – когда сила слабнет или перестаёт действовать. То есть, когда водитель давит на педаль газа, то сила, воздействующая на плечо, повышается, и, соответственно увеличивается крутящий момент двигателя.

Мощность обеспечивает преодоление всевозможных сил, которые мешают двигаться автомобилю. Это и сила трения в двигателе, трансмиссии и в приводах автомобиля, и аэродинамические силы, и силы качения колёс и т.д. Чем больше мощность, тем большее сопротивление сил машина сможет преодолеть и развить большую скорость. Однако мощность – сила не постоянная, а зависящая от оборотов мотора. На холостом ходу мощность одна, а на максимальных оборотах – совершенно другая. Многими автопроизводителями указывается, при каких оборотах достигается максимально возможная мощность автомобиля.

Необходимо учитывать, что максимальная мощность не развивается сразу. Автомобиль стартует с места практически при минимальных оборотах (немного выше холостого хода), и для того, чтобы отмобилизировать полную мощность, требуется время. Тут и вступает в дело крутящий момент двигателя. Именно от него и будет зависеть, за какой отрезок времени автомашина достигнет своей максимальной мощности – то есть, динамика её разгона.

Зачастую водитель сталкивается с такими ситуациями, когда требуется придать автомобилю значительное ускорение для выполнения необходимого маневра. Прижимая педаль акселератора в пол, он чувствует, что автомобиль ускоряется слабо. Для быстрого ускорения нужен мощный крутящий момент. Именно он и характеризует приёмистость автомобиля.

Основную силу в двигателе внутреннего сгорания вырабатывает камера сгорания, в которой воспламеняется топливно-воздушная смесь. Она приводит в действие кривошипно-шатунный механизм, а через него – коленчатый вал. Рычагом является длина кривошипа, то есть, если длина будет больше, то и крутящий момент тоже увеличится.

Однако увеличивать кривошипный рычаг до бесконечности невозможно. Ведь тогда придётся увеличивать рабочий ход поршня, а вместе с ним и размеры двигателя. При этом уменьшатся и обороты двигателя. Двигатели с большим рычагом кривошипного механизма можно применить только лишь в крупномерных плавательных средствах. А в легковых автомашинах с небольшими размерами коленчатого вала не поэкспериментируешь.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий