Движение на малых оборотах с ранним переключением
Зачастую инструктора автошкол и старые водители рекомендуют новичкам ездить «в натяг» – переходить на высшую передачу при достижении 1500–2000 об/мин коленчатого вала. Первые дают советы из соображений безопасности, вторые – по привычке, ведь раньше на машинах стояли низкооборотные моторы. Сейчас подобный режим годится разве что для дизеля, чей максимальный крутящий момент находится в более широком диапазоне оборотов, чем у бензинового двигателя.
Не все автомобили оборудованы тахометрами, поэтому малоопытным водителям при данном стиле езды стоит ориентироваться по скорости движения. Режим с ранним переключением выглядит так: 1-я передача – движение с места, переход на II – 10 км/ч, на III – 30 км/ч, IV – 40 км/ч, V – 50 км/ч.
Подобный алгоритм переключения – признак очень спокойного стиля вождения, дающий несомненное преимущество в безопасности. Минус – в повышении скорости износа деталей силового агрегата и вот почему:
- Масляный насос достигает номинальной производительности начиная с 2500 об/мин. Нагрузка при 1500–1800 оборотах вызывает масляное голодание, особенно страдают шатунные подшипники скольжения (вкладыши) и компрессионные поршневые кольца.
- Условия сжигания топливовоздушной смеси далеки от благоприятных. В камерах, на тарелках клапанов и днищах поршней усиленно откладывается нагар. В процессе работы эта сажа раскаляется и воспламеняет топливо без искры на свече зажигания (эффект детонации).
- Если нужно резко увеличить обороты двигателя при ездес самых «низов», вы нажимаете на акселератор, но разгон остается вялым, пока мотор не достигнет своего крутящего момента. Но как только это происходит, вы включаете высшую передачу и частота вращения коленвала снова падает. Нагрузка большая, смазки недостаточно, помпа слабо перекачивает антифриз, отсюда возникает перегрев.
- Вопреки распространенному мнению, экономия бензина в данном режиме отсутствует. При нажатии на педаль газа топливная смесь обогащается, но сгорает не полностью, значит, расходуется впустую.
Владельцам авто, оснащенных бортовым компьютером, легко убедиться в неэкономичности движения «в натяг». Достаточно включить на дисплее показ мгновенного расхода горючего.
Подобная манера езды усиленно изнашивает силовой агрегат, когда автомобиль эксплуатируется в тяжелых условиях – по грунтовым и проселочным дорогам, с полной загрузкой либо прицепом. Не стоит расслабляться и владельцам авто с мощными моторами объемом 3 л и более, способными резко ускоряться с «низов». Ведь для интенсивного смазывания трущихся деталей двигателя нужно держать минимум 2000 об/мин коленчатого вала.
Угловая скорость
Когда тело движется по окружности, то не все его точки движутся с одинаковой скоростью относительно оси вращения. Если взять лопасти обычного бытового вентилятора, которые вращаются вокруг вала, то точка расположенная ближе к валу имеет скорость вращения больше, чем отмеченная точка на краю лопасти. Это значит, у них разная линейная скорость вращения. В то же время угловая скорость у всех точек одинаковая.
Угловая скорость представляет собой изменение угла в единицу времени, а не расстояния. Обозначается буквой греческого алфавита – ω и имеет единицу измерения радиан в секунду (рад/с). Иными словами, угловая скорость – это вектор, привязанный к оси обращения предмета.
Формула для вычисления отношения между углом поворота и временным интервалом выглядит так:
ω = ∆ϕ/∆t,
где:
- ω – угловая скорость (рад./с);
- ∆ϕ – изменение угла отклонения при повороте (рад.);
- ∆t – время, затраченное на отклонение (с).
Обозначение угловой скорости употребляется при изучении законов вращения. Оно употребляется при описании движения всех вращающихся тел.
Формула угловой скорости
Угловая скорость в конкретных случаях
На практике редко работают с величинами угловой скорости. Она нужна при конструкторских разработках вращающихся механизмов: редукторов, коробок передач и прочего.
Вычислить её, применяя формулу, можно. Для этого используют связь угловой скорости и частоты вращения.
ω = 2*π / Т = 2*π*ν,
где:
- π – число, равное 3,14;
- ν – частота вращения, (об./мин.).
В качестве примера могут быть рассмотрены угловая скорость и частота вращения колёсного диска при движении мотоблока. Часто необходимо уменьшить или увеличить скорость механизма. Для этого применяют устройство в виде редуктора, при помощи которого понижают скорость вращения колёс. При максимальной скорости движения 10 км/ч колесо делает около 60 об./мин. После перевода минут в секунды это значение равно 1 об./с. После подстановки данных в формулу получится результат:
ω = 2*π*ν = 2*3,14*1 = 6,28 рад./с.
К сведению. Снижение угловой скорости часто требуется для того, чтобы увеличить крутящий момент или тяговое усилие механизмов.
Шестерёнчатый уменьшитель хода для мотокультиватора
Как определить угловую скорость
Принцип определения угловой скорости зависит от того, как происходит движение по окружности. Если равномерно, то употребляется формула:
ω = 2*π*ν.
Если нет, то придётся высчитывать значения мгновенной или средней угловой скорости.
Величина, о которой идёт разговор, векторная, и при определении её направления используют правило Максвелла. В просторечии – правило буравчика. Вектор скорости имеет одинаковое направление с поступательным перемещением винта, имеющего правую резьбу.
Правило Максвелла для угловой скорости
Рассмотрим на примере, как определить угловую скорость, зная, что угол поворота диска радиусом 0,5 м меняется по закону ϕ = 6*t:
ω = ϕ / t = 6 * t / t = 6 с-1
Вектор ω меняется из-за поворота в пространстве оси вращения и при изменении значения модуля угловой скорости.
Калькулятор шин — онлайн анализ изменения размера колеса, клиренса, показания спидометра и других характеристик
Шинный калькулятор позволяет в онлайн режиме просчитать все изменения в автомобиле после установки шин другого типоразмера. После замены меняются скорость, клиренс и комфортность езды. А если при этом были допущены ошибки при подборе, то изменения произойдут в худшую сторону и будут способствовать быстрому износу узлов и агрегатов. Также могут измениться показатели управляемости и поведения автомобиля, расход бензина и реальная скорость движения. Поэтому не рекомендуется выходить за значения заводских параметров более чем на 2-3%.
Представленный ниже калькулятор шин прост в использовании. Вам необходимо сначала ввести типоразмер установленный на вашем автомобиле шины — ширина, высота профиля, диаметр диска. Затем вводится тот типоразмер, который вы хотите установить.
Также в таблице «спидометр и клиренс» нужно указать данные по какой скорости требуются. По умолчанию стоит 90 км/ч. После нажатия кнопки «рассчитать» в таблицах будут просчитаны результаты.
Опираясь на полученные данные вы можете оценить целесообразность замены автомобильной шины.
Установка нестандартных типоразмеров может привести к ухудшению характеристик автомобиля и разрушению самой шины. Например, при увеличении диаметра колесного диска и одновременном уменьшении высоты профиля шины увеличивается нагрузка на подвеску автомобиля, а так же ухудшается комфорт. Лучше всего выбирать типоразмеры шины, рекомендованные заводом изготовителем автомобиля.
Размеры | Старый | Новый | Сравнение |
Ширина шины, мм (A) | |||
Высота профиля, мм (B) | |||
Внутренний диаметр, мм (C) | |||
Внешний диаметр, мм (D) |
Погрешность в показаниях спидометра зависит от скорости автомобиля. При увеличении скорости она также увеличивается.
Как пользоваться шинным калькулятором
При замене автомобильных шин может возникнуть вопрос, можно ли поставить колеса определенного размера в целях улучшения внешнего вида или удешевления покупки комплектующих материалов. Ответить на этот вопрос можно положительно с некоторыми оговорками.
При замене шин нужно в первую очередь ориентироваться на рекомендации завода изготовителя автомобиля.
Как правило, данная информация находится на внутренней стороне крышки бензобака, на боковой стойке кузова или в руководстве по эксплуатации автотранспортным средством.
В качестве примера рассмотрим конкретную модель автомобиля (BMW X5 xDrive30d III (F15) 2018 года выпуска):
Ширина, профиль, радиус шины | Тип установки |
255/55 R18 | Заводской |
255/50 R19 | Допустимый |
275/40 R20 | Допустимый |
285/35 R21 | Допустимый |
Как видно из таблицы, рекомендованный типоразмер шины для рассмотренной модели автомобиля — 255/55 R18. При этом имеется возможность заменить шину одним из трех допустимых типоразмеров.
Сравним при помощи шинного калькулятора два типоразмера 255/55 R18 (заводской) и 275/40 R20 (допустимый). Для этого в таблице исходных данных заполняем строку «начального размера шин» — 255/55 R18. В строке «новый размер шин» заносим допустимый типоразмер — 275/40 R20. Нажимаем кнопку «рассчитать» и получаем следующий результат:
Размеры | Старый | Новый | Сравнение |
Ширина шины, мм (A) | 255 | 275 | 20 |
Высота профиля, мм (B) | 140 | 110 | -30 |
Внутренний диаметр, мм (C) | 457 | 508 | 51 |
Внешний диаметр, мм (D) | 737 | 728 | -9 |
Как видно из полученных результатов для новой шины потребуется диск, диаметр которого на 51 мм больше изначального (сравнение R18 и R20). Компенсирует это уменьшение высоты профиля на 30 мм (60 мм — общее изменение). В результате 51 — 60 = -9 мм. На это значение уменьшится диаметр колеса. Соответственно -9 / 2 = -4,5 мм. То есть клиренс уменьшится на 4,5 мм.
Следующий блок расчета анализирует изменение скорости и клиренса. Клиренс мы уже рассмотрели, поэтому рассмотрим скорость. По умолчанию стоит 90 км/ч. Вы можете указать любое значение спидометра как перед расчетами так и непосредственно после.
Так как диаметр нового колеса уменьшился на 9 мм, соответственно это повлечет за собой изменение реальной скорости при показаниях спидометра. При 90 км/ч на спидометре реальная скорость будет 88.78 км/ч.
Изменим значения и просчитаем:
- При 80 км/ч на спидометре реальная скорость будет 78.92 км/ч.
- При 70 км/ч на спидометре реальная скорость будет 69.05 км/ч.
- При 60 км/ч на спидометре реальная скорость будет 59.19 км/ч.
Поведем итог. Пользоваться калькулятором шин в онлайн режиме очень просто. С его помощью можно проанализировать характеристики различных типоразмеров шин, рекомендованных под конкретную модель и марку автомобиля. И не рекомендуется выходить за значения заводских параметров более чем на 2-3 %, так как могут кардинально измениться показатели управляемости и эксплуатации автомобиля.
3.4 Вращающий момент двигателя
Определим вращающий момент
двигателя по формуле:
Mв=30*Ne/ (nT*π) (16)
Mв1=30*6,9*1000/
(500*3,14) =131,93 кН*м
Мв3=30*22.94/ (1500*3,14)
=146,12 кН*м
Аналогично проводим расчет для
следующих значений nТ и результаты расчетов
сводим в Таблицу 1.
Таблица 1 – Внешняя
характеристика двигателя
Параметры двигателя | Скоростной режим двигателя | ||||||||||
500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 5000 | ||
Ne, кВт | 6,90 | 14,66 | 22,94 | 31,42 | 39,76 | 47,65 | 54,75 | 60,74 | 65,28 | 68,06 | |
Me, кН*м | 131,93 | 140,07 | 146,12 | 150,09 | 151,96 | 151,76 | 149,46 | 145,08 | 138,61 | 130,05 |
По полученным данным таблицы 1
строится внешняя скоростная характеристика рисунок 1.
Рисунок 1 – Внешняя скоростная
характеристика двигателя
Скачать программу можно ТУТ ДОСТАВКА ПОЧТОЙ
Размеры клиновых, зубчатых ремней и размеры шкивов самостоятельно выбираются для рассчета. Так же выберается профиль ремня и шкива.
Основным элементом при работе системы передачи, является шкив и ремень. Чтобы работа ременной передачи происходила правильно, нужно обязательно произвести правильный расчет шкива для зубчатого ремня.
Произвести правильный расчет, если у вас технический склад ума и вы читаете чертежи, вам поможет чертеж нужной вам детали, там можно найти всю подробную информацию.
Если же вы только начинаете, работать в данном направлении, и у вас нет опыта чтения чертежей, то не отчаивайтесь на помощь вам придет специальный справочник для «чайников». Справочник молодого конструктора, это обучающее издание, в котором вы наверняка найдете интересующие вас размеры, например, каким должно быть точное расстояние между зубьями определенного типа шкивов.
Ускорение, момент и связь их с массой
Помимо приведённых выше величин, с вращением связано ещё несколько моментов. Учитывая же, сколько в автомобиле крутящихся деталей разного веса, их практическое значение нельзя не учесть.
Равномерное вращение – это важная вещь. Вот только нет ни одной детали, которая бы всё время крутилась равномерно. Число оборотов любого крутящегося узла, от коленвала до колеса, всегда в конечном итоге растёт, а затем падает. И та величина, которая показывает, насколько выросли обороты, называется угловым ускорением. Поскольку она производная от угловой скорости, измеряется она в радианах на секунду в квадрате (как линейное ускорение – в метрах на секунду в квадрате).
С движением и её изменением во времени связан и другой аспект – момент импульса. Если до этого момента мы могли рассматривать только чисто математические особенности движения, то здесь уже нужно учитывать то, что каждая деталь имеет массу, которая распределена вокруг оси. Он определяется соотношением начального положения точки с учётом направления движения – и импульса, то есть произведения массы на скорость. Зная момент импульса, возникающий при вращении, можно определить, какая нагрузка будет приходиться на каждую деталь при её взаимодействии с другой
Чем вредна высокая частота вращения коленвала?
Манера езды «тапку в пол» подразумевает постоянное раскручивание коленчатого вала до 5–8 тыс. оборотов за минуту и позднее переключение скоростей, когда от шума двигателя буквально звенит в ушах. Чем чреват данный стиль вождения, кроме создания аварийных ситуаций на дороге:
- все узлы и агрегаты автомобиля, а не только мотор, испытывают максимальные нагрузки в течение срока эксплуатации, что снижает общий ресурс на 15–20%;
- из-за интенсивного нагрева двигателя малейший сбой охлаждающей системы ведет к капитальному ремонту вследствие перегрева;
- трубы выхлопного тракта прогорают значительно быстрее, а вместе с ними – дорогостоящий катализатор;
- ускоренно изнашиваются элементы трансмиссии;
- поскольку частота вращения коленвала превышает нормальные оборотычуть ли не вдвое, расход горючего тоже увеличивается в 2 раза.
Эксплуатация автомобиля «на разрыв» имеет дополнительный негативный эффект, связанный с качеством дорожного покрытия. Движение на большой скорости по неровным дорогам буквально убивает элементы подвески, причем в кратчайшие сроки. Достаточно влететь колесом в глубокую выбоину – и передняя стойка согнется либо треснет.
Общее техническое состояние автомобиля, в том числе его двигателя, системы охдаждения, трансмиссии и многое другое, всегда можно проверить с помощью персонального ODB-II автосканера. Одним из лучших представителей данного рода устройств является сканер корейской сборки Scan Tool Pro Black Edition.
Помимо точной диагностики всех узлов и агрегатов автомобиля, автосканер способен в режиме реального времени отображать обороты, давление масла, показания со всех датчиков и т.д. Сканер совместим с большинством автомобилей имеющих ODB-II разъём и довольно прост в эксплуатации. Информацию о состоянии вашего авто всегда можно вывести на любое устройство под управлением iOS, android или windows.
Выбор по основным характеристикам
Длительный срок службы при обеспечении заданного уровня работы оборудования, с которым работает мотор-редуктор, – ключевая выгода при правильном выборе привода. Наша многолетняя практика показывает, что при определении требований исходить стоит из следующих параметров:
- минимум 7 лет безремонтной работы для червячного механизма;
- от 10–15 лет для цилиндрического привода.
В ходе определения данных для подачи заказа на производство мотор-редуктора ключевыми характеристиками являются:
- мощность подключенного электродвигателя,
- скорость вращения подвижных элементов системы,
- тип питания мотора,
- условия эксплуатации редуктора – режим работы и загрузки.
При расчете мощности электродвигателя для мотор-редуктора за основу берут производительность техники, с которой он будет работать. Производительность редукторного мотора во многом зависит от выходного момента силы и скоростью его работы. Скорость, как и КПД, может меняться при колебаниях напряжения в системе питания двигателя.
Скорость моторного редуктора – это зависимая величина, на которую влияют две характеристики:
- передаточное число;
- частота вращательных движений мотора.
В нашем каталоге есть редукторы с разными скоростными параметрами. Имеются модели с одним или несколькими скоростными режимами. Второй вариант предусматривает наличие системы регулирования скоростных параметров и применяется в случаях, когда во время эксплуатации редуктора необходима периодическая смена скоростных режимов.
Питание двигателя – осуществляется через подачу постоянного или переменного тока. Моторные редукторы постоянного тока рассчитаны на подключение к сети с 1 или 3 фазами (под напряжением 220 и 380В соответственно). Приводы переменного тока работают с напряжением 3, 9, 12, 24 или 27В.
Профессиональный подбор мотор-редуктора в зависимости от эксплуатационных условий требует определения характера и частоты/интенсивности будущей эксплуатации. В зависимости от характера нагруженной деятельности, на которую рассчитан редуктор, это может быть устройство:
- для работы в безударном режиме, с умеренными или сильными ударами;
- с плавной системой пуска для уменьшения разрушительных нагрузок при запуске и остановке привода;
- для продолжительной эксплуатации с частыми включениями (по количеству запусков в час).
По режиму работы мотор-редуктор может быть рассчитан на продолжительную работу двигателя без перегрева в особо тяжелом, тяжелом, среднем, легком режиме.
Расчет оборотов двигателя по передаточному числу
Как рассчитать передаточное отношение шестерен механической передачи.
В этой статье я приведу пример расчета передаточного отншения шестерен разного диаметра, с разным количеством зубьев
Данный расчет применяется в том случае, когда важно определить к примеру скорость вращения вала редуктора при известной скорости привода и характеристиках зубьев
Естественно, можно произвести замеры частоты вращения выходного вала, однако в некоторых случаях требуется именно расчет. Помимо этого, в теоретической механике, при конструировании различных узлов и механизмов требуется рассчитать шестерни, чтобы получить заданную скорость вращения.
Термин передаточное число является весьма неоднозначным. Он перекликается с термином передаточное отношение, что не совсем верно. Говоря о передаточном числе, мы подразумеваем сколько оборотов совершит ведомое колесо (шестерня) относительно ведущего.
Для правильного понимания процессов и строения шестерни – следует предварительно ознакомится с ГОСТ 16530-83.
Итак, рассмотрим пример расчета с использованием двух шестерен.
Чтобы рассчитать передаточное отношение мы должны иметь как минимум две шестерни. Это называется зубчатая передача. Обычно первая шестерня является ведущей и находится на валу привода, вторая шестерня называется ведомой и вращается входя в зацепление с ведущей. Пи этом между ними может находится множество других шестерен, которые называются промежуточными. Для упрощения расчета рассмотрим зубчатую передачу с двумя шестернями.
В примере мы имеем две шестерни: ведущую (1) и ведомую (2). Самый простой способ заключается в подсчете количества зубьев на шестернях. Посчитаем количество зубьев на ведущей шестерне. Так же можно посмотреть маркировку на корпусе шестерни.
Представим, что ведущая шестерня (красная) имеет 40 зубьев, а ведомая(синяя) имеет 60 зубьев.
Разделим количество зубьев ведомой шестерни на количество зубьев ведущей шестерни, чтобы вычислить передаточное отношение. В нашем примере: 60/40 = 1,5. Вы также можете записать ответ в виде 3/2 или 1,5:1.
Такое передаточное отношение означает, что красная, ведущая шестерня должна совершить полтора оборота, чтобы синяя, ведомая шестерня совершила один оборот.
Теперь усложним задачу, используя большее количество шестерен. Добавим в нашу зубчатую передачу еще одну шестерню с 14 зубьями. Сделаем ее ведущей.
Начнем с желтой, ведущей шестерни и будем двигаться в направлении ведомой шестерни. Для каждой пары шестерен рассчитываем свое передаточное отношение. У нас две пары: желтая-красная; красная-синяя. В каждой паре рассматриваем первую шестерню как ведущую, а вторую как ведомую.
В нашем примере передаточные числа для промежуточной шестерни: 40/14 = 2,9 и 60/40 = 1,5.
Умножаем значения передаточных отношений каждой пары и получаем общее передаточное отношение зубчатой передачи: (20/7) × (30/20) = 4,3. То есть для вычисления передаточного отношения всей зубчатой передачи необходимо перемножить значения передаточных отношений для промежуточных шестерен.
Определим теперь частоту вращения.
Используя передаточное отношение и зная частоту вращения желтой шестерни, можно запросто вычислить частоту вращения ведомой шестерни. Как правило, частота вращения измеряется в оборотах в минуту (об/мин) Рассмотрим пример зубчатой передачи с тремя шестернями. Предположим, что частота вращения желтой шестерни 340 оборотов в минуту. Вычислим частоту вращения красной шестерни.
Будем использовать формулу: S1 × T1 = S2 × T2,
S1 – частота вращения желтой (ведущей) шестерни,
Т1 – количество зубьев желтой (ведущей) шестерни;
S2- частота вращения красной шестерни,
Т2 – количество зубьев красной шестерни.
В нашем случае нужно найти S2, но по этой формуле вы можете найти любую переменную.
340 rpm × 7 = S2 × 40
Получается, если ведущая, желтая шестерня вращается с частотой 340 об/мин, тогда ведомая, красная шестерня будет вращаться со скоростью примерно 60 об/мин. Таким же образом рассчитываем частоту вращения пары красная-синяя. Полученный результат – частота вращения синей шестерни – будет являться искомой частотой вращения всей зубчатой передачи.
Источник
Пирог с киви
Киви, обладающий приятной кислинкой, — идеальный фрукт для приготовления десертов. Баланс кислого и сладкого вкусов – это, пожалуй, и есть настоящая гармония. Кроме того, яркий зеленый киви способен украсить даже самый скромный пирог. Чтобы этот экзотический фрукт не утратил свой вкус, лучше всего добавлять его целыми кусочками, не измельчая в пюре.
«Супер шеф» хочет поделиться с вами рецептом простого и вкусного пирога на скорую руку с добавлением лимона и киви. Лимон можно заменить лаймом, получится еще вкуснее.
ИнгредиентыПеченье 300 г
Грецкие орехи 0,5
стак. Сахар 70 г
Сливочное масло 80 г
Сгущенное молоко 400 г
Лимонный сок 100 мл
Лимонная цедра 1 ст. л.
ПриготовлениеРазогрейте духовку до 170 градусов.
Измельчите орехи и печенье до состояния муки. Растопите сливочное масло, смешайте его с печеньем и орехами, добавьте сахар.
Распределите полученную массу по дну формы для выпечки, придавите ее рукой, чтобы получился плотный слой. Поставьте форму в духовку на 5 минут, затем дайте основе пирога остыть.
В кастрюле смешайте сгущенное молоко с желтками, соком лимона, цедрой. Взбейте миксером до образования густой однородной массы.
Вылейте крем в форму поверх слоя печенья и отправьте пирог в духовку на 15 минут. Когда он остынет, поставьте его в холодильник минимум на час.
Нарежьте киви тонкими ломтиками, выложите поверх пирога.
Взбейте охлажденные сливки с сахарной пудрой и украсьте ими пирог. Можно также посыпать орехами для украшения.
Калькулятор КПП и главной пары
R колеса | |
Ширина колеса | |
Профиль | |
Обороты двигателя | 500100015002000250030003500400045005000550060006500700075008000850090009500100001050011000 |
Главная пара | 3.9 3.5 3.74.14.34.54.74.95.16.8 |
1-я передача | 3.63 (станд.) 2.92 (5-й ряд)2.92 (6-й ряд) 2.92 (7-й ряд)3.42 (8-й ряд) 3.42 (10-й ряд)3.63 (11-й ряд) 3.16 (12-й ряд) 3.17 (15-й ряд)3.17 (18-й ряд) 3.17 (20-й ряд)3.17 (102-й ряд)2.92 (103-й ряд)2.92 (104-й ряд)2.92 (200-й ряд)3.0 (026-й ряд) 3.0 (711-й ряд) 2.67 (745-й ряд)2.67 (74-й ряд) |
2-я передача | 1.95 (станд.)1.81 (5-й ряд)1.81 (6-й ряд)2.05 (7-й ряд)2.05 (8-й ряд)2.05 (10-й ряд)2.22 (11-й ряд)1.95 (12-й ряд)1.81 (15-й ряд)2.11 (18-й ряд)1.9 (20-й ряд)1.95 (102-й ряд)1.95 (103-й ряд)1.95 (104-й ряд)2.22 (200-й ряд)2.53 (026-й ряд) 2.53 (711-й ряд) 1.93 (745-й ряд)1.93 (74-й ряд) |
3-я передача | 1.36 (станд.)1.28 (5-й ряд)1.28 (6-й ряд)1.56 (7-й ряд)1.36 (8-й ряд)1.36 (10-й ряд)1.54 (11-й ряд)1.36 (12-й ряд)1.28 (15-й ряд)1.48 (18-й ряд)1.26 (20-й ряд)1.36 (102-й ряд)1.36 (103-й ряд)1.36 (104-й ряд)1.76 (200-й ряд)2.06 (026-й ряд) 2.06 (711-й ряд) 1.59 (745-й ряд)1.56 (74-й ряд) |
4-я передача | 0.94 (станд.)0.97 (5-й ряд)1.06 (6-й ряд)1.31 (7-й ряд)0.97 (8-й ряд)0.97 (10-й ряд)1.17 (11-й ряд)1.03 (12-й ряд)0.94 (15-й ряд)1.13 (18-й ряд)0.94 (20-й ряд)0.94 (102-й ряд)0.94 (103-й ряд)1.03 (104-й ряд)1.39 (200-й ряд)1.74 (026-й ряд) 1.74 (711-й ряд) 1.37 (745-й ряд)1.37 (74-й ряд) |
5-я передача | 0.78 (станд.)0.78 (5-й ряд)0.94 (6-й ряд)1.13 (7-й ряд)0.78 (8-й ряд)0.78 (10-й ряд)0.89 (11-й ряд)0.78 (12-й ряд)0.73 (15-й ряд)0.89 (18-й ряд)0.73 (20-й ряд)0.73 (102-й ряд)0.69 (103-й ряд)0.73 (104-й ряд)1.17 (200-й ряд)1.48 (026-й ряд) 1.48 (711-й ряд) 1.2 (745-й ряд)0.79 (74-й ряд) |
6-я передача | нет0.69 (станд.)0.94 (7-й ряд)0.78 (18-й ряд)0.94 (200-й ряд) |
Результаты: | |
martaler.ru
Как рассчитать передаточное число
Шестерня и колесо имеют разное количество зубов с одинаковым модулем и пропорциональный размер диаметров. Передаточное число показывает, сколько оборотов совершит ведущая деталь, чтобы провернуть ведомую на полный круг. Зубчатые передачи имеют жесткое соединение. Передающееся количество оборотов в них не меняется. Это негативно сказывается на работе узла в условиях перегрузок и запыленности. Зубец не может проскользнуть, как ремень по шкиву и ломается.
Расчет без учета сопротивления
В расчете передаточного числа шестерен используют количество зубьев на каждой детали или их радиусы.
u12 = ± Z2/Z1 и u21 = ± Z1/Z2,
Где u12 – передаточное число шестерни и колеса;
Z2 и Z1 – соответственно количество зубьев ведомого колеса и ведущей шестерни.
Знак «+» ставится, если направление вращения не меняется. Это относится к планетарным редукторам и зубчатым передачам с нарезкой зубцов по внутреннему диаметру колеса. При наличии паразиток – промежуточных деталей, располагающихся между ведущей шестерней и зубчатым венцом, направление вращения изменяется, как и при наружном соединении. В этих случаях в формуле ставится «–».
При наружном соединении двух деталей посредством расположенной между ними паразитки, передаточное число вычисляется как соотношение количества зубьев колеса и шестерни со знаком «+». Паразитка в расчетах не участвует, только меняет направление, и соответственно знак перед формулой.
Обычно положительным считается направление движения по часовой стрелке. Знак играет большую роль при расчетах многоступенчатых редукторов. Определяется передаточное число каждой передачи отдельно по порядку расположения их в кинематической цепи. Знак сразу показывает направление вращения выходного вала и рабочего узла, без дополнительного составления схем.
Вычисление передаточного числа редуктора с несколькими зацеплениями – многоступенчатого, определяется как произведение передаточных чисел и вычисляется по формуле:
u16 = u12×u23×u45×u56 = z2/z1×z3/z2×z5/z4×z6/z5 = z3/z1×z6/z4
Зубчатое зацепление жесткое. Детали не могут проскальзывать относительно друг друга, как в ременной передаче и менять соотношение количества вращений. Поэтому на выходе обороты не изменяются, не зависят от перегруза. Верным получается расчет скорости угловой и количества оборотов.
КПД зубчатой передачи
Для реального расчета передаточного отношения, следует учитывать дополнительные факторы. Формула действительна для угловой скорости, что касается момента силы и мощности, то они в реальном редукторе значительно меньше. Их величину уменьшает сопротивление передаточных моментов:
- трение соприкасаемых поверхностей;
- изгиб и скручивание деталей под воздействием силы и сопротивление деформации;
- потери на шпонках и шлицах;
- трение в подшипниках.
Для каждого вида соединения, подшипника и узла имеются свои корректирующие коэффициенты. Они включаются в формулу. Конструктора не делают расчеты по изгибу каждой шпонки и подшипника. В справочнике имеются все необходимые коэффициенты. При необходимости их можно рассчитать. Формулы простотой не отличаются. В них используются элементы высшей математики. В основе расчетов способность и свойства хромоникелевых сталей, их пластичность, сопротивление на растяжение, изгиб, излом и другие параметры, включая размеры детали.
Что касается подшипников, то в техническом справочнике, по которому их выбирают, указаны все данные для расчета их рабочего состояния.
При расчете мощности, основным из показателей зубчатых зацепления является пятно контакта, оно указывается в процентах и его размер имеет большое значение. Идеальную форму и касание по всей эвольвенте могут иметь только нарисованные зубья. На практике они изготавливаются с погрешностью в несколько сотых долей мм. Во время работы узла под нагрузкой на эвольвенте появляются пятна в местах воздействия деталей друг на друга. Чем больше площадь на поверхности зуба они занимают, тем лучше передается усилие при вращении.
Все коэффициенты объединяются вместе, и в результате получается значение КПД редуктора. Коэффициент полезного действия выражается в процентах. Он определяется соотношением мощности на входном и выходном валах. Чем больше зацеплений, соединений и подшипников, тем меньше КПД.
Купить мотор-редуктор
ПТЦ «Привод» – производитель редукторов и мотор-редукторов с разными характеристиками и КПД, которому не безразличны показатели окупаемости его оборудования. Мы постоянно работаем не только над повышением качества нашей продукции, но и над созданием самых комфортных условий ее приобретения для вас.
Специально для минимизации ошибок выбора нашим клиентам предлагается интеллектуальный конфигуратор. Чтобы воспользоваться этим сервисом, не нужны специальные навыки или знания. Инструмент работает в режиме онлайн и поможет вам определиться с оптимальным типом оборудования. Мы же предложим лучшую цену мотор-редуктора любого типа и полное сопровождение его доставки.