Что такое матричные фары, устройство и принцип работы

Из каких элементов состоит матричная фара

Поскольку в основе матричной фары лежат светодиоды, они являются неотъемлемой частью конструкции. Использование данного вида источников света позволяет улучшить качество и яркость освещения. В список конструктивных элементов фары входят:

  • светодиодные матрицы ближнего и дальнего света;
  • модули ДХО, указателей поворота и габаритов;
  • пластмассовый корпус с прозрачным рассеивателем;
  • вентилятор охлаждения;
  • декоративная решетка;
  • блок управления.


Конструктивные особенности матричной оптики Поскольку система управляется автоматически, блок управления обменивается сигналами с другими модулями автомобиля, а также датчиками движения и видеокамерой.

Разновидность функций освещения в матричной оптике

Чем сложней устроена конструкция оптики, тем больше функций она может выполнять. В матричной оптики насчитывают девять разновидностей функций освещения:

  • постоянный дальний свет;
  • освещение для автомагистралей;
  • ближнее освещение;
  • адаптивное освещение;
  • освещение на перекрестках;
  • освещение в любую погоду;
  • подсвечивание пешеходов;
  • адаптивное динамическое освещение;
  • динамический указатель поворотов.

Список не малый как видим, рассмотрим по каждому пункту отдельно, как устроен и принцип освещения.

Полисегментальный дальний свет позволит водителю двигаться с постоянным включенным дальним светом. В таком случае будут задействованы 25 отдельных светодиодов дальнего света. Так же будет задействована видеокамера, которая в темное время суток следит за встречными и попутными автомобилями по их свету фар. Как только обнаружен автомобиль, блок управления выключает часть светодиодов, которые направлены на движущийся автомобиль. Свободное пространство дороги будет освещаться в прежнем виде. Для уменьшения ослепления водителей яркость оставшегося блока матричной оптики будет уменьшена. По данным с паспорта, блок управления матричных фар одновременно может распознать до восьми автомобилей.

Свет для движения по автомагистрали основывается на полученную информацию с навигационной системы. Адаптивная система сужает конус дальнего света матричных фар, таким образом, чтоб максимально направить вперед и сделать удобной для других водителей.

Ближнее освещение имеет традиционную форму, средняя часть дороги освещается меньше, а вот боковая часть и обочина больше. При этом матричная оптика направляется вниз в зависимости от рельефа дороги и населенного пункта.

Адаптивный свет направлен на лучшее освещение машины спереди и сбоку во время выполнения маневра поворота. В таком случае система матричных фар в каждой из фар задействует по три светодиода, которые включаются или выключаются при повороте руля или срабатывании поворотов.

Освещение перекрестков предназначено для освещения перекрестков при приближении к ним. В этом случае для матричных фар так же задействована навигационная система, на основе информации которой и определяется перекресток.

Всепогодное освещение из самого названия говорит о том, что при движении в плохих погодных условиях (туман, дождь, снег) будет меняется качество освещения. Блок управления настроить светодиоды матричной оптики таким образом, чтоб избежать ослепления от своих же фар. Интенсивность светодиодов матричной фары будет меняться в зависимости от видимости.

Подсвечивание пешеходов в матричных фарах реализовано на высоком уровне. В случае обнаружения пешехода с помощью камеры и системы ночного виденья, на обочине или опасной близости от нее оптика будет троекратно сигнализировать дальним светом об этом. Тем самым предупреждать как водителя, так и пешехода.

Динамическое адаптивное освещение это предпоследний вариант в матричных фарах. Суть его работы направлена на освещение дороги во время поворота. Поворачивая рулевое колесо, яркость светового пучка перенаправляется с центральной части в сторону поворота. То есть одна часть светодиодов становится тусклее, другая ярче.

Динамический указатель поворотов матричных фар рассчитан на управляемое движение светодиодов в направлении поворота. Таким образом, 30 последовательных светодиодов оптики включаются последовательно с периодичностью в 150 мс. Со стороны это не только красиво выглядит, но и дает больше информации о том или этом маневре автомобиля.

Многие производители уже готовят свои автомобили под внедрение подобной технологии матричной оптики, но насколько это удастся, пока никто не может сказать. На данный момент компания Audi является единственным правообладателем подобной технологии в оптике и захочет ли она делиться с другими производителями остается под вопросом.

Видео о принципе работы матричной оптики и её строении:

https://youtube.com/watch?v=D6O2-O6sMMI

Что такое светодиодные фары, и как они работают?

 

Большинство людей знают, что светодиоды – это источники света, основанные на светоизлучающих диодах, которые имеют ряд преимуществ как перед галогенными, так и перед ксеноновыми лампами. В том числе и в автомобильной промышленности. Но мало кто задумывается, что светодиоды по сравнению с галогенными лампами более дороги и сложны в процессе производства. Тем не менее светодиоды захватывают автопромышленность.

Почему? Все дело не только в их ярком освещении, но и в их невероятной энергоэффективности за счет того, что каждый используемый диод в фаре потребляет гораздо меньше энергии по сравнению с галогенными или ксеноновыми источниками света. 

Большинство новых автомобилей сегодня оснащены светодиодными дневными ходовыми огнями. Что касаемо полноценных светодиодных фар, пока что в мире LED-фары не стали глобальным стандартом. Тем не менее с каждым годом все больше автомобилей получают в базовой комплектации полноценные светодиодные фары. В будущем, скорее всего, все автомобили (даже дешевые) будут поставляться только со светодиодами. 

Производители, оснащая машины LED-лампами, преследуют одну цель – снижение расхода топлива и снижение вредных выбросов. При использовании светодиодных источников света в автомобиле падает нагрузка на электрическую цепь. Вот почему светодиоды становятся популярны во всем мире. 

Также светодиоды производят кристально чистый свет. Новое же поколение матричных фар позволило достичь огромных успехов в адаптации автомобильного освещения в зависимости от дорожных условий. Это огромный шаг вперед по сравнению с галогенными, ксеноновыми и обычными светодиодными фарами. Единственный минус матричных фар – это невероятно дорогостоящая замена оптики в случае ее повреждения или поломки. 

Как работают светодиодные фары?

Светодиод – это просто полупроводник, который излучает свет, когда через него проходит ток. Для того чтобы полупроводник начал светиться, необходимо ничтожно малое количество электричества. Из-за того что светодиоду нужно мало энергии, аккумулятор для поддержания освещения расходует гораздо меньше энергии по сравнению с галогенными или ксеноновыми лампами. Следовательно, чем меньше расходуется энергии, тем меньше идет нагрузки на двигатель для зарядки аккумулятора, что в конечном итоге влияет на экономичность автомобиля. 

Ток в светодиодных фарах течет от катода к аноду, проходя через полупроводниковый материал, который по проводимости представляет собой что-то среднее между металлом и каучуком. В итоге полупроводник при прохождении электричества начинает испускать фотоны, которые и освещают дорогу впереди автомобиля. 

Из-за простоты конструкции светодиода срок его службы может длиться более десяти лет. Тем не менее светодиодные фары – пока что новая технология. И как она себя зарекомендует, покажет время. К сожалению, пока нет 10-летних автомобилей со светодиодной оптикой, по которым можно было бы сделать вывод о реальном сроке службы светодиодных фар. Ведь в отличие от домашних светодиодных ламп LED-фары в автомобиле подвергаются постоянной тряске, вибрации, перепадам температур и т. п. И кто его знает, как долго будут служить светодиоды в автомобиле. Вполне возможно, что их надежность окажется под сомнением.

Что такое адаптивные светодиодные фары?

Стоит отметить, что не все адаптивные фары являются адаптивными светодиодными блоками. Адаптивный светодиодный блок – это фара, которая может менять направление и/или яркость в соответствии с дорожными условиями за счет изменения порядка свечения светодиодов в блоке и за счет изменения их яркости свечения. 

Что такое светодиодные матричные лампы (Matrix), и как они работают?

В математике матрица определяется как прямоугольный массив чисел, организованный в строках и столбцах, которые рассматриваются как единый объект. Поменяйте «цифры» на «светодиоды и датчики» в этом определении и вы получите матричную концепцию автомобильного освещения.

Светодиодные матричные фары работают в паре с датчиками и камерами, которыми оснащен автомобиль.

Все эти датчики и камеры контролируют дорогу впереди, чтобы определять интенсивность движения и изменяемые дорожные условия (например, резкие повороты).

Все эти данные используются для интеллектуального освещения дороги за счет контроля освещения каждого светодиода в матрице. Но конечная цель матричной фары – сохранить как можно больше света без вреда встречному движению. 

Плюсы

  • Энергетически эффективные источники света
  • Могут быть относительно недорогими 
  • Долгосрочный прогнозируемый срок службы

Резюме файла AFS

Согласно нашим записям, существуют один тип(ы) файлов, связанных с расширением AFS, самый популярный из которых отформатирован в качестве STAAD.foundation Project File. Самое распространенное связанное приложение — Bentley Systems STAAD Foundation Advanced, выпущенное Bentley Systems. Кроме того, один различные программы позволяют вам просматривать эти файлы.
Большинство файлов AFS относится к CAD Files.

Файлы AFS можно просматривать с помощью операционной системы Windows. Они обычно находятся на настольных компьютерах (и ряде мобильных устройств) и позволяют просматривать и иногда редактировать эти файлы.

Рейтинг популярности файлов AFS составляет «Низкий». Это означает, что они не часто встречаются на большинстве устройств.

Возможности и конструкция

Помимо конструкции самой оптической системы, важную роль для работы адаптивного освещения играет конструкция системы управления. В случае с матричной оптикой самым важным датчиком системы является LiDAR — дальномер оптического диапазона, позволяющий системе управления получить предоставления обо всех источниках света и объектах в зоне освещения головной оптики. Так же используются данные навигационной системы, датчики скорости автомобиля, дождя и освещенности и данные ассистента ночного видения, если он есть в автомобиле. На основании этих данных блок управления может использовать один из множества режимов работы.

Дальний свет для движения по автомагистрали включается на основании данных навигационной системы. В этом случае система Matrix Beam включает узкий луч с максимальной дальностью освещения, наилучшим образом подходящий для ночных поездок на высокой скорости.

Ближний свет с классической асимметричной формой светового пучка использует 15 отдельных светодиодов в каждой фаре и включается в населенных пунктах. Может применяться отдельно от адаптивного освещения. Дальняя зона освещения реализуется отдельным набором светодиодов и может быть отключена для реализации туристического или всепогодного режима.

Туристический режим используется при движении в странах с левосторонним движением для машин, созданных для движения правостороннего. Он позволяет уменьшить асимметрию светового луча при включенном режиме ближнего света. Включается режим или автоматически, по данным навигационной системы, или вручную, через меню мультимедийной системы.

Конструкцию основной оптической системы фары можно увидеть на рисунке, но помимо нее в конструкцию входят также модуль указателя поворота (разумеется, со светодиодами), модуль охлаждения, причем со сменным вентилятором, и внутренняя проводка.

Статическое освещение боковой зоны предназначено для облегчения маневрирования и безопасного проезда перекрестков. Специальная секция фары освещает широкую зону спереди-сбоку от автомобиля. Включается автоматически при малой скорости и включении указателя поворотов, а также при угле поворота рулевого колеса более 50 градусов и скорости менее 60 км/ч. При проезде перекрестков срабатывает режим освещения для перекрестков, который включается по данным навигационной системы и скорости менее 60 км/ч.

Всепогодное освещение используется в условиях тумана и снегопада. В этом случае снижается мощность ближнего света и включается статическое освещение боковых зон. Включается режим вручную, кнопкой на панели, а ассистент дальнего света при этом отключается.

Динамическое адаптивное освещение работает на скорости более 60 км/ч вне населенных пунктов. Используется матрица из 25 светодиодов дальнего света, создающая 25 независимых сегментов. Система обеспечивает изменение направления луча света в зависимости от рельефа, не ослепляет встречный и попутный транспорт, снижает яркость в зонах расположения источников с высоким коэффициентом отражения — дорожных знаков и все другие функции адаптивности.

Маркирующая подсветка пешеходов срабатывает вне населенных пунктов и скорости более 60 км/ч, при наличии ассистента ночного видения

Секции дальнего света фар в направлении пешехода мигают, привлекая внимание водителя, а силуэт пешехода подсвечивается красным на дисплее приборной панели

Помимо датчика LiDAR в работе системы задействованы блок управления корректора фар и блок комфорта бортовой сети. Причем самих корректоров у адаптивной оптики нет по двум причинам. На машинах с матричной LED-оптикой установлена пневмоподвеска и сама оптика имеет высокий запас адаптивности даже в режиме ближнего света за счет разделения зон. Так что блок управления в строгом смысле слова блоком коррекции уровня не является, просто располагается и подключен так же, как блок коррекции на машинах без этой системы. Помимо внешних блоков, используются три блока контроля в самой фаре.

Из каких элементов состоит матричная фара

Поскольку в основе матричной фары лежат светодиоды, они являются неотъемлемой частью конструкции. Использование данного вида источников света позволяет улучшить качество и яркость освещения. В список конструктивных элементов фары входят:

  • светодиодные матрицы ближнего и дальнего света;
  • модули ДХО, указателей поворота и габаритов;
  • пластмассовый корпус с прозрачным рассеивателем;
  • вентилятор охлаждения;
  • декоративная решетка;
  • блок управления.


Конструктивные особенности матричной оптики Поскольку система управляется автоматически, блок управления обменивается сигналами с другими модулями автомобиля, а также датчиками движения и видеокамерой.

Самоприспосабливающееся освещение поворотов

Данное освещение еще называют адаптивным, так как оно адаптируется к каждому повороту автоматически, освещая его в большей степени.

Работа данной функции на прямую завязана на работу навигационной системы автомобиля.

Благодаря полученным навигационным данным, в которые входит место начала поворота, его продолжительность, радиус, и место его окончания, система автоматически начинает направлять поток света в нужное направление еще до того, как автомобиль начал входить в поворот.

Это в значительной мере повышает безопасность вождения ночью.

Благодаря матричным фарам, информативность указателей поворотов стала выше. При включении правого или левого поворота, 30 светодиодов с периодом в 150 мс, начинают последовательно мигать в направлении предполагаемого поворота.

Это выглядит не только информативно, но и красиво.

Чтобы матричные фары не вышли из строя, а вернее не перегорели светодиоды, в системе предусмотрен специальный воздуховод с вентилятором, который их охлаждает.

А крепкий герметичный пластиковый корпус надежно защищает их от внешних воздействий.

Пока технология матричных фар внедрена только в модели Audi A8.

Ведь такую же технологию начала внедрять, и компания Opel, здесь она получила название «Matrix Beam». Как говориться, «немцы рулят».

Матричные фары — один из вариантов конструкции светодиодных фар (не зря компания Audi, внедрившая это решение одной из первых, называет его Matrix LED)

Источники света все те же, а важное различие — в том, как организована работа этих источников

В описаниях матричной оптики акцент нередко делают на количестве светодиодов — к примеру, в каждой из мерседесовских фар Multibeam работает 24 диода, а в усовершенствованном варианте, который представят публике вместе с новым поколением Е-класса, их будет уже 28. Однако и в «обычных» светодиодных фарах количество источников света запросто может составлять несколько десятков. К примеру, на сравнительно доступном Audi A3 за ближний свет отвечают девять «светодиодных чипов», а за дальний свет — десять светодиодов

При разговоре о матричных фарах обратить внимание надо не столько на количество, сколько на качество

«Простая» светодиодная оптика воспроизводит структуру, известную нам еще по дедушкиным «Жигулям»: как и раньше, есть отдельные блоки габаритных огней, дальнего и ближнего света — просто устаревшие лампочки уступили место диодам. При переходе речь идет уже не о простом выборе между ближним и дальним, а о создании динамической световой картины, которая постоянно подстраивается под дорожную обстановку. В фаре Matrix LED привычное разделение по типу света существует — но включать, приглушать или выключать можно не только отдельный блок диодов (которых в каждой паре пять), но и каждый отдельный светодиод. В итоге электроника располагает множеством вариантов ближнего и дальнего. Свой световой сценарий найдется практически на все случаи жизни — ведь количество доступных комбинаций приближается к одному миллиарду!

Матричные фары в последнее время начали появляться даже на сравнительно доступных моделях — одной из таких недавно стало семейство Audi A4.

Нетрудно догадаться, что для реализации всех возможностей матричных фар нужны, во-первых, сложная управляющая электроника, а во-вторых, система устройств, считывающих информацию о дорожной обстановке — датчики, видеокамеры и даже навигационная система, которая предупредит о приближении к повороту и расскажет о его конфигурации. А значит, эта новомодная оптика — штука дорогая. И если в прайс-листе в соответствующей графе стоит сравнительно гуманная сумма, то при необходимости за свой счет менять разбитую в аварии фару быстро может прийти в голову в мысль, что не так, может быть, и плохи допотопные галогенки… Не зря же новомодная оптика одной из первых попала в нашу рубрику с говорящим названием «Посчитали — прослезились». Сможете угадать, в какую сумму обойдется замена пары фар? Правильный ответ .

Передняя оптика автомобиля способна сменить хоть и не весь его вид, но на 40% как минимум. Многие производители стали использовать светодиодную оптику на своих новых моделях. Расскажем о принципе работы и устройстве матричных фар.

Изначально базу для матричной оптики положила компания Opel под названием Matrix Beam. В сравнении с обычной оптикой, матричные фары намного сложней. Она состоит из модуля ближнего и модуля дальнего света, так же в наличии есть дневные ходовые огни, габаритные огни и блок поворотов. В дизайнерском решении есть воздуховод с вентилятором для охлаждения механизмов и блок управления, на каждую фару свой.

Маркировка ксеноновых фар

В последние годы ксеноновые фары стали весьма популярными у отечественных автолюбителей. Они обладают рядом преимуществ перед классическими галогенными источниками света. Они имеют другой тип цоколя — D2R (так называемые рефлекторные) или D2S (так называемые прожекторные), и температуру свечения ниже 5000 К (цифра 2 в обозначениях соответствует второму поколению ламп, а цифра 1 — соответственно, первому, но встречаются они в настоящее время нечасто по очевидным причинам)

Обратите внимание, что установку ксеноновых фар необходимо выполнять правильно, то есть, в соответствии с действующими правилами и постановлениями. Поэтому, лучше выполнять установку ксеноновой фары в специализированной автомастерской. Далее приведены специфические обозначения для галогенных фар, с помощью которых есть возможность определить, можно ли вместо них устанавливать ксеноновый свет:

Далее приведены специфические обозначения для галогенных фар, с помощью которых есть возможность определить, можно ли вместо них устанавливать ксеноновый свет:

  • DC/DR. В такой фаре имеется отдельно источники ближнего и дальнего света. Причем такие обозначения могут иметь место и на газоразрядных лампах. Соответственно, вместо них можно поставить «ксенонки», однако в соответствии с упомянутыми выше правилами.
  • DC/HR. Подобные фары предназначены для установки в них газоразрядные лампы для ближнего освещения. Соответственно, на другие типы фар такие лампы устанавливать нельзя.
  • HC/HR. Эта маркировка устанавливается на фары японских автомобилей. Она означает, что вместо галогеновых фар на них можно монтировать ксеноновые. Если же подобная надпись имеется на европейском или американском автомобиле, то на них установка ксеноновых фар запрещена! Соответственно, для них можно использовать лишь галогенные фары. Причем это касается как ламп ближнего, так и дальнего света.

Иногда перед упомянутыми выше символами пишут цифры (например, 04). Эта цифра указывает, что в документацию и конструкцию фар были внесены изменения по требованиям Правил ЕЭК ООН с номером, указанным перед упомянутыми символами.

Что касается мест, где нанесена информация о фаре, то у ксеноновых источников света их может быть три:

  • непосредственно на стекле с его внутренней стороны;
  • сверху крышки фары, выполненной из стекла или пластика, для изучения соответствующей информации обычно необходимо открыть капот автомобиля;
  • на задней части стеклянной крышки.

Ксеноновые лампы имеют еще ряд индивидуальных обозначений. Среди них несколько английских букв:

  • А — боковые;
  • В — противотуманные;
  • С — ближнего света;
  • R — дальнего света;
  • C/R (CR) — для использования в фарах в качестве источников как ближнего, так и дальнего света.

Наклейка на ксеноновые фары

Образцы различных наклеек

В последнее время среди автолюбителей, на чьих машинах установлены ксеноновые фары не с завода, а в процессе эксплуатации, набирает популярность тема о самостоятельном изготовлении наклеек на фары. В частности, это актуально для «ксенонок», которые подвергались переделыванию, то есть, были заменены или установлены нормальные ксеноновые линзы (для оптики без изменений соответствующую наклейку изготавливает производитель фары или автомобиля).

При самостоятельном изготовлении наклеек для ксеноновых фар необходимо обязательно знать следующие параметры:

Какие именно линзы были установлены — билинзы или обычные моно.
Используемые в фаре лампочки — для ближнего света, для дальнего света, для поворотника, ходовые огни, тип цоколя и так далее

Обратите внимание, что для китайских линз типа Plug-n-play нельзя на наклейке указывать китайскую линзу и галогеновый цоколь (типа Н1, Н4 и прочие). Также при их монтаже необходимо обязательно скрывать их проводку, поскольку по их внешнему виду (установке) можно легко определить такие приборы, и получить неприятности при проверке сотрудниками Государственной дорожной службы.
Геометрические размеры наклейки. Она должна полностью помещаться на корпусе фары и давать полную информацию при взгляде на нее.
Производитель фар (их в настоящее время очень много).
Дополнительная информация, например, дата выпуска фар.

Она должна полностью помещаться на корпусе фары и давать полную информацию при взгляде на нее.
Производитель фар (их в настоящее время очень много).
Дополнительная информация, например, дата выпуска фар.

Виды источников света

В современных автомобилях можно выделить несколько видов фар в зависимости от применяемых источников света.

Лампы накаливания

Наиболее простой и доступный, но уже устаревший источник – это лампы накаливания. Их работу обеспечивает вольфрамовая нить, находящаяся в безвоздушной стеклянной колбе. Когда в лампу поступает напряжение, нить нагревается и от нее начинает исходить свечение. Однако при постоянной эксплуатации вольфрам имеет свойство испаряться, что в итоге приводит к разрыву нити. По мере развития новых технологий лампы накаливания не выдержали конкуренции и перестали использоваться в автомобильной оптике.

Галогенные лампы

Несмотря на то, что принцип работы галогенных ламп схож с лампами накаливания, срок службы галогенок – в разы дольше. Увеличивать продолжительность работы ламп, а также повышать уровень освещения помогают пары галогенного газа (йода или брома), закачанные внутрь лампы. Газ взаимодействует с атомами вольфрама на нити накаливания. Испаряясь, вольфрам циркулирует по колбе, а затем, соединяясь с нитью накаливания, вновь оседает на ней. Такая система позволяет продлить срок службы лампы до 1 000 часов и более.

Ксеноновые (газоразрядные) лампы

В ксеноновых лампах свет образуется благодаря нагреву газа под высоким напряжением. Однако розжиг и питание лампы может осуществляться только с помощью специального оборудования, увеличивающего итоговую стоимость оптики. Но затраты оправданы: ксеноновые фары способны прослужить 2 000 часов и более.

Наиболее часто в системе головного света используются би-ксеноновые фары, совмещающие в себе ближний и дальний свет.


Светодиоды постепенно набирают популярность, составляя конкуренцию галогенным и ксеноновым лампам

Светодиодные лампы

Светодиоды – наиболее современный и набирающий популярность источник света. Срок службы таких ламп достигает 3 000 и более часов. При наименьшем потреблении энергии, светодиоды способны обеспечивать достаточный уровень освещенности. Такие лампы активно используются как во внешней, так и во внутренней системе освещения автомобиля.

В передних блок-фарах светодиоды стали применяться с 2007 года. Для обеспечения нужного уровня яркости света, в головные фары устанавливается сразу несколько сегментов светодиодных источников. В некоторых случаях передние фары могут включать в себя до двух-трех десятков светодиодов.

Из каких элементов состоит матричная фара

Поскольку в основе матричной фары лежат светодиоды, они являются неотъемлемой частью конструкции. Использование данного вида источников света позволяет улучшить качество и яркость освещения. В список конструктивных элементов фары входят:

  • светодиодные матрицы ближнего и дальнего света;
  • модули ДХО, указателей поворота и габаритов;
  • пластмассовый корпус с прозрачным рассеивателем;
  • вентилятор охлаждения;
  • декоративная решетка;
  • блок управления.

Поскольку система управляется автоматически, блок управления обменивается сигналами с другими модулями автомобиля, а также датчиками движения и видеокамерой.

Переключение угла освещения, яркости и режима работы фар происходит на основе информации с датчиков и навигационных систем транспортного средства.

Уникальные светодиодные матричные фары –инновационная система освещения!

Светодиодные матричные фары с адаптируемыми параметрами обеспечивают непревзойденную функциональность автомобильного освещения.

Совместно разработанная HELLA и Volkswagen система фар на базе светодиодной матрицы –мощная и функциональная система освещения на рынке .

Инновационная система освещения для нового внедорожника класса люкс, которую Volkswagen предложит водителям, называется IQ.LIGHT — LED Matrix Headlamps. Благодаря индивидуальному управлению диодами световой матрицы обеспечивается не только мощный световой поток, но и высокая точность его распределения и регулирования. Количество индивидуально управляемых светодиодов достигает 128 штук. По сравнению с традиционными системами автомобильного освещения светодиодная система IQ.LIGHT позволяет значительно повысить безопасность и комфорт вождения. Ведь с системой фар на базе светодиодной матрицы водители имеют гораздо более четкую картину дорожной обстановки и намного раньше видят возможные препятствия.

Светодиодные фары состоят из индивидуально управляемых светодиодов, образующих адаптивную световую матрицу с модулями ближнего и дальнего света, которые входят в единую электрическую цепь. При необходимости применяется режим индивидуального управления светодиодами. Модуль ближнего света состоит из 48 светодиодов. Количество светодиодов в модуле дальнего света – 27. Именно эти 75 светодиодных модулей ближнего и дальнего света формируют адаптивный световой поток системы освещения. Дополнительные 53 светодиода обеспечивают такие функции как освещение непосредственно перед автомобилем, поворотный свет, дневной ходовой и позиционный свет, а также индикацию поворота.

В этом году премия «Мировые Автомобильные Компоненты» впервые ввела номинацию «Фары головного освещения», в которой победителем стала – HELLA, и, по мнению экспертов, и по выбору потребителя. Уверенные позиции компании и бренда, инновационные разработки подтверждают, что премия получена заслуженно.

Каждый из светодиодов активируется соответствующим блоком управления, который анализирует сигналы, поступающие от передней камеры, а также данные цифровой карты и координаты от блока GPS. Кроме того, учитываются такие параметры как угол поворота автомобиля и скорость движения. За счет анализа всех этих данных система за доли секунды идеально адаптирует характеристики освещения дороги и прилегающей местности.

Динамическая адаптация освещения не только обеспечивает индивидуальное управление светодиодными фарами, каждая из которых может включаться и выключаться независимо от других, но и позволяет регулировать параметры освещения в зависимости от конкретной местности, окружающей обстановки и дорожной ситуации. Система освещения автомобиля получает множество различных сигналов от устройств и систем. Это позволяет автомобилю «узнавать», где он находится: в городе, на грунтовой дороге за городом, на шоссе или на пересеченной местности, а также определять примерные координаты других участников дорожного движения. Благодаря точной адаптации светового потока и его компонентов система фар со светодиодной матрицей позволяет никогда не ослеплять других водителей и участников движения. Поэтому при максимально высоком качестве освещения и комфорте для водителя автомобиль не мешает другим водителям и пешеходам. Адаптируемая система защищает от ослепления и самих водителей . Перед попаданием света фар на дорожные знаки видеокамера автомобиля посылает в систему освещения сигнал о временном снижении яркости света от светодиодов. Высокоточная система позволяет нивелировать даже свет, отражаемый от мокрой поверхности дороги. Кроме того, водители обязательно оценят более высокую мощность освещения, которую обеспечивает новое световое решение.

Эволюция фар

Новые современные технологии в ту или иную область промышленности не приходят сразу. Всему нужно время. Вот и в автомобилестроении прежде, чем на машинах начали появляется матричные фары, этому явлению предшествовала эволюция автомобильной оптики.

Многим водителям уже известны ушедшие в прошлое автомобильные фары с нитью накаливания, более современные биксеноновые и ксеноновые фары, которые еще применяются на автомобилях.

В наши дни революцию в системе освещения автомобиля сделали светодиодные устройства, но применимы они были сначала только в поворотниках или в ходовых и габаритных огнях.

Компания Audi решила пойти еще дальше и создать устройства освещения со светодиодами, работающее, как в дальнем, так и ближнем режимах работы главных фар.

Поэтому, если дать простое определение, что такое матричные фары, то это приборы освещения, которые полностью функционируют на светодиодах.

Audi-A6_2015_1600x1200_wallpaper_03

Немолодой компрессорный мотор V6 3.0, который в России развивает 310 л.с., был серьезно модернизирован, сообщают в Audi

У обычных седана и универсала Audi A6 базовый бензиновый двигатель теперь 190-сильный 1.8 TFSI, который в версии ultra расходует всего 5,7 л топлива на 100 км. Его приход вероятен — на место 180-сильного 2-литрового турбомотора, хотя нужно помнить, что абсолютно все двигатели для Европы теперь соответствуют строгим эконормам Евро-6. Турбодизель 2.0 в исполнении ultra (150 л.с.) до России не доберется точно, то же самое можно сказать и о «чистых» дизелях V6 3.0 TDI мощностью 218, 272, 320 и 326–346 сил. Вместо них будет старый 245-сильный агрегат. А вот на форсированный с 204 до 220 л.с. «атмосферник» 2.8 мы очень даже рассчитываем — такой недавно появился у Audi A7 Sportback. Кстати, 6-ступенчатая механическая коробка передач заявлена как новая.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий