Особенности дизельного топлива
Большинство требований к системе питания дизельного мотора выдвигается с учетом того, что дизельное топливо имеет ряд специфических особенностей. Горючее такого рода представляет собой смесь керосиновых и газойлевых соляровых фракций. Дизельное топливо получают после того, как из нефти реализуется отгон бензина.
Дизельное топливо обладает целым рядом свойств, главным из которых принято считать показатель самовоспламеняемости, который оценивается цетановым числом. Представленные в продаже виды дизельного топлива имеют цетановое число на отметке 45–50. Для современных дизельных агрегатов наилучшим топливом является горючее с большим показателем цетанового числа.
Система питания дизельного ДВС обеспечивает подачу хорошо очищенного дизельного топлива к цилиндрам, ТНВД сжимает горючее до высокого давления, а форсунка подает его в распыленном на мельчайшие частицы виде в камеру сгорания. Распыленное дизельное топливо смешивает с горячим (700–900 °С) воздухом, который нагревается до такой температуры от высокого сжатия в цилиндрах (3–5 МПа) и самовоспламеняется.
Обратите внимание, рабочая смесь в дизельном моторе не поджигается отдельным устройством, а воспламеняется самостоятельно от контакта с разогретым воздухом под давлением. Эта особенность сильно отличает дизельный ДВС от бензиновых аналогов
Дизельное топливо имеет еще и более высокую плотность сравнительно с бензином, а также обладает лучшей смазывающей способностью
Не менее важной характеристикой выступает вязкость, температура застывания и чистота дизельного топлива. Температура застывания позволяет делить топливо на три базовых сорта горючего: летнее дизельное топливо, зимний дизель и арктическое дизельное топливо
Конструктивные особенности дизеля
Конструктивно основа дизеля не отличается от бензинового двигателя. Такой же блок цилиндров, поршневая группа, шатуны и головка блока с клапанами. Клапаны, в отличие от бензинового двигателя изготовлены из жаропрочной стали, более массивные, выдерживающие температурные и ударные нагрузки. Дизель по массе намного тяжелее и по габаритам больше бензинового двигателя. Разница в технологических принципах действия бензинового и дизельного двигателей вносит конструктивные различия в детали по массе, а также по габаритам. Принципиальные отличия, связанные моделью преобразования топлива и воздуха в топливовоздушную смесь с условиями воспламенения, характеризуют основу работы дизеля.
В отличие от бензинового двигателя, подача воздуха в цилиндры дизеля и дизельного топлива осуществляется раздельно:
- воздух, поступивший в цилиндр, под воздействием давления поршня сжимается, нагреваясь до высоких температур (600 — 900 градусов);
- в необходимый момент, по заданной программе или настройке топливного насоса высокого давления (ТНВД) из форсунки под давлением 180 атм происходит впрыск топлива, в результате которого смесь самовоспламеняется.
Главным в дизельном двигателе является смесеобразование в очень короткий промежуток времени.
Дизельные двигатели делятся на два класса по типу камеры сгорания:
- раздельная (форкамерная);
- неразделенная (непосредственный впрыск).
В настоящее время, большая часть легковых автомобилей оснащается дизелями с раздельной камерой сгорания. Использование раздельной камеры сгорания позволяет снизить скорость нарастания компрессии в цилиндрах, а это, в свою очередь, уменьшает шум и вибрацию двигателя. Раздельная камера сгорания представляет собой камеру, дополнительно оснащенную вихревой и являющейся промежуточным звеном между цилиндром и топливной системой. Благодаря работе вихревой камеры, в которой начинается воспламенение смеси и происходит снижение темпа нарастания компрессии.
На рисунках:
а) вихревая камера фирмы Перкинс (разделенная камера сгорания);
б) дельтовидная, применяемая на двигателях Д-245 (неразделенная камера сгорания);
в) тороидальная, применяемая на двигателях КамАЗ (неразделенная камера сгорания);
1 – вставка вихревой камеры;
2 – головка блока цилиндров;
3 – форсунка;
А – полость вихревой камеры;
Б – полость камеры в поршне.
Возможно, холодное отношение к дизелю потенциальных покупателей автомобилей связано с громким шумом его, напоминающего работу трактора, а также низкими скоростными показателями. Это было справедливо в то время, когда основу дизельных двигателей составляли ТНВД с плунжерными парами и впрыск осуществлялся непосредственно в камеру сгорания с применением механических узлов. Двигатели с непосредственным впрыском (нераздельной камерой сгорания) ещё существуют и наиболее часто встречаются на коммерческом дизельном транспорте. В нераздельной камере сгорания впрыск топлива происходит в надпоршневое пространство, а камера сгорания расположена в углублении поршня. Устаревшая технология непосредственного впрыска для двигателей с большим объемом в настоящее время актуальна, несмотря на применение двухступенчатой системы впрыска, управляемых электроникой ТНВД и форсунок, снижения шумов и получения стабильных высоких оборотов коленчатого вала.
На рисунке — неразделенная камера сгорания и свеча накаливания. В поршне предусмотрена канавка, в которой происходит горение смеси.
Работа системы питания двигателя
Если вкратце рассмотреть работу системы питания двигателя, то выглядит она следующим образом.
Топливо (в данном случае бензин) за счет разрежения воздуха, создаваемого в системе при движении поршня от ВМТ к НМТ, а также с помощью топливного насоса, поступает в карбюратор автомобиля, проходя через фильтры. Топливный насос подает бензин из бака. Топливные насосы подразделяются на электрические и механические. Механические топливные насосы устанавливаются на автомобилях с карбюраторными силовыми агрегатами. Автомобили, оборудованные электронным впрыском, оснащены электрическим насосом. В карбюраторе пары бензина смешиваюется с поступающим воздухом, образуя топливно-воздушную смесь, которая и направляется в цилиндр. После совершения рабочего цикла (сгорания смеси), поршень, двигаясь вверх, выдавливает отработавшие газы через выпускной клапан, которые в конечном итоге выпускаются в атмосферу.
Работа системы питания двигателя с системой впрыска (инжекторной) происходит аналогичным образом.
Рабочие режимы системы питания двигателя
В зависимости от дорожных условий и целей водитель может использовать разные режимы езды. Им соответствуют и определенные рабочие режимы системы питания двигателя, каждому из которых принадлежит топливно-воздушная смесь особого состава. Для каждого режима работа системы питания двигателя будет иметь свои особенности.
- Качество смеси будет богатым при запуске холодного мотора. Потребление воздуха при этом минимальное. В данном режиме возможность движения категорически исключается. В противном случае это вызовет повышенное потребление топлива и износ деталей двигателя.
- Состав смеси будет достаточно обогащенным при использовании «холостого хода», который применяется во время движения «накатом» или работе включенного мотора в прогретом состоянии.
- Состав смеси будет обедненным при передвижении с частичными нагрузками.
- Состав смеси также будет обогащенным в режиме полных нагрузок при езде на высокой скорости.
- Состав смести будет обогащенным, максимально приближенным к богатому, при езде в условиях резкого ускорения.
Выбор рабочих условий системы питания двигателя должен быть оправдан потребностью движения в определенном режиме.
Очистка топливной системы дизельного двигателя
При использовании дизтоплива несоответствующего качества с повышенным содержанием элементов серы, рабочие детали топливной системы покрываются вредными отложениями и теряют работоспособность. В частности, отверстия форсунок забиваются наростами, затвердевшими под воздействием высоких температур. Под воздействием перечисленных факторов происходит: снижение пропускной способности распылителей, изменяется направление факела распыла и пр. Перед автовладельцем возникает закономерная проблема, как прокачать топливную систему дизельного двигателя.
Лучше всего доверить мероприятия по очищению системы профессионалам. При наличии специального оборудования форсунки демонтируются и проверяются на диагностических стендах. Однако, такой метод отличается высокой трудоемкостью с серьезными материальными затратами.
Опытные водители производят промывку топливной системы дизельного двигателя своими руками в условиях гаража. При этом они используют упрощенную методику – добавление специальной жидкости в топливный бак. Данную процедуру рекомендуется проводить через каждые 3 – 5 000 километров.
Наибольшей популярностью среди автовладельцев пользуются очистительные препараты для дизельных форсунок:
Выбирая лучший очиститель для топливной системы своего автомобиля, необходимо изучить особенности каждого препарата, ознакомиться с отзывами потребителей. Благодаря своевременному обслуживанию дизельного двигателя, существенно увеличивается эксплуатационный срок, а также улучшаются технические характеристики вашего транспортного средства.
Дизельный двигатель: устройство системы питания
Система питания современного дизельного ДВС представляет собой целый комплекс устройств. Основной задачей становится не просто подача топлива к инжекторным форсункам, а еще и подача горючего под высоким давлением. Давление необходимо для высокоточного дозированного впрыска в камеру сгорания цилиндра. Система питания дизеля выполняет следующие важнейшие функции:
- дозирование строго определенного количество топлива с учетом нагрузки на двигатель в том или ином режиме его работы;
- эффективный впрыск топлива в заданный промежуток времени с определенной интенсивностью;
- распыление и максимально равномерное распределение горючего по объему камеры сгорания в цилиндрах дизельного ДВС;
- предварительная фильтрация топлива перед подачей горючего в насосы системы питания и инжекторные форсунки;
Однородное смесеобразование и 2-стадийный режим
Мощностной режим (однородное смесеобразование) – идеальное решение для агрессивной езды в городских условиях, обгонов, а также движения по скоростным трассам и шоссе. В этом случае используется конический факел, он менее экономичный по сравнению с предыдущим вариантом. Впрыск осуществляется на такте впуска, а образованная эмульсия обычно имеет соотношение 14,7:1, то есть близкое к стехиометрическому. По сути, данная система автоматической подачи топлива точно такая же, как и распределительная.
Двухстадийный режим подразумевает впрыск топлива на такте сжатия, а также пуска. Основная задача – резкое повышение двигателя. Ярким примером эффективной работы такой системы является движение на малых оборотах и резкое нажатие на акселератор. В таком случае вероятность детонации значительно возрастает. По этой простой причине вместо одного этапа впрыск проходит в два.
На первом этапе впрыскивается небольшое количество горючего на такте впуска. Это позволяет несколько понизить температуру воздуха в цилиндре. Можно говорить о том, что в цилиндре будет находиться сверхбедная смесь в соотношении 60:1, следовательно, детонация невозможна как таковая. На заключительном этапе такта сжатия осуществляется впрыск струи горючего, которая доводит эмульсию до богатой в соотношении примерно 12:1. Сегодня можно говорить о том, что такая топливная система двигателя введена только для транспортных средств европейского рынка. Обусловлено это тем, что Японии не присущи большие скорости, следовательно, нет высоких нагрузок на двигатель. В Европе же большое количество скоростных шоссе и автобанов, поэтому водители привыкли ездить быстро, а это большая нагрузка на ДВС.
Особенности работы дизеля
Работа дизельного двигателя будет выглядеть так:
- во время движения поршня в нижнее положение осуществляется приток чистых воздушных масс в цилиндры;
- при движении поршня вверх происходит нагрев этого воздуха;
- в высочайшей точке создается большая степень сжатия, вследствие чего температура может доходить до 800-900 градусов Цельсия;
- при прохождении самой верхней точки осуществляется впрыск топлива в камеры под сильнейшим давлением. В итоге оно соприкасается с раскаленными воздушными массами и происходит воспламенение.
- под действием горения происходит рост давления в цилиндре, передающего момент, что и создает шум такого двигателя.
Благодаря указанной схеме дизельному мотору вполне достаточно небогатой смеси топлива. Стоимость подобного топлива невероятно низка, что объясняет его неприхотливость, а также экономичность. К тому же коэффициент полезного действия, а также крутящий момент выше, чем у мотора на бензине.
Но у дизеля есть и определенные минусы:
- вибрация и определенная шумность;
- определенные затруднения при холодном пуске;
- относительно невысокая мощность, но это вряд ли можно отнести к современным моделям.
Кто изобрёл и как развивалась технология прямого или непосредственного впрыска топлива
Технология прямого или непосредственного впрыска топлива изначально разрабатывалась для дизельных двигателей. Примечательно, что в том виде, в котором она существует сейчас, её в начале 20-го века разработал и успешно внедрил русский инженер Вадим Аршаулов.
Немного позже эту технологию внедрили и в бензиновые двигатели, но произошло это отнюдь не в конце 20-го века, как думают некоторые. Эта технология использовалась ещё во времена Второй мировой войны в двигателях истребителей Messerschmitt. Что касается автомобилей, то первым серийным автомобилем с бензиновым двигателем, в котором её применили, стал легендарный Mercedes-Benz 300 SL Gullwing, появившийся в 1954 году.
В то время управление прямым впрыском топлива осуществлялось с помощью механики, что было очень сложно и дорого, в связи с чем в бензиновых двигателях эта технология сразу не прижилась. Однако благодаря развитию электроники, в 1990-х годах автопроизводители решили к ней вернуться.
Варианты системы питания
Основными видами горючего для ДВС являются бензин и дизельное топливо («солярка»). Газ (метан) так же относится к видам современного топлива, но, несмотря на широкую применяемость, пока не получил актуальности. Вид топлива является одним из критериев классификации систем питания ДВС.
В этой связи выделяют силовые агрегаты:
- бензиновые;
- дизельные;
- основанные на газообразном топливе.
Но наиболее признанной среди специалистов является типология систем питания двигателя по способу подачи топлива и приготовления топливно-воздушной смеси. Следуя данному принципу классификации, различаются, во-первых, система питания карбюраторного двигателя, во-вторых, система питания с впрыском топлива (или инжекторного двигателя).
Карбюратор
Карбюраторная система основана на действии технически сложного устройства – карбюратора. Карбюратор – это прибор, осуществляющий приготовление смеси топлива и воздуха в необходимых пропорциях. Несмотря на разнообразие видов, в автомобильной практике наибольшее применение получил поплавковый всасывающий карбюратор, принципиальная схема которого включает:
- поплавковую камеру и поплавок;
- распылитель, диффузор и смесительную камеру;
- воздушную и дроссельную заслонки;
- топливные и воздушные каналы с соответствующими жиклерами.
Подготовка топливно-воздушной смеси в карбюраторе осуществляется по пассивной схеме. Движение поршня в такте впуска (первом такте) создает в цилиндре разряженное пространство, в которое и устремляется воздух, проходя через воздушный фильтр и сквозь карбюратор. Именно здесь и происходит формирование горючей смеси: в смесительной камере, в диффузоре топливо, вырывающееся из распылителя, дробится воздушным потоком и смешивается с ним. Наконец, через впускной коллектор и впускные клапаны горючая смесь подается в конкретный цилиндр двигателя, где в необходимый момент и воспламеняется искрой от свечи зажигания.
топливно-воздушной смеси
Впрыск топлива
Эпоха карбюратора сменяется эпохой инжекторного двигателя, система питания которого основана на впрыске топлива. Ее основными элементами являются: электрический топливный насос (расположенный, как правило, в топливном баке), форсунки (или форсунка), блок управления ДВС (так называемые «мозги»).
Принцип работы указанной системы питания сводится к распылению топлива через форсунки под давлением, создаваемым топливным насосом. Качество смеси варьируется в зависимости от режима работы двигателя и контролируется блоком управления. Важным компонентом такой системы является форсунка. Типология инжекторных двигателей основывается именно на количестве используемых форсунок и места их расположения.
- с распределенным впрыском;
- с центральным впрыском.
Система распределенного впрыска предполагает использование форсунок по количеству цилиндров двигателя, где каждый цилиндр обслуживает собственная форсунка, участвующая в подготовке горючей смеси. Система центрального впрыска располагает только одной форсункой на все цилиндры, расположенной в коллекторе.
Особенности дизельного двигателя
Как бы особняком стоит принцип действия, на котором основывается система питания дизельного двигателя. Здесь топливо впрыскивается непосредственно в цилиндры в распыленном виде, где и происходит процесс смесеобразования (смешивания с воздухом) с последующим воспламенением от сжатия горючей смеси поршнем. В зависимости от способа впрыска топлива, дизельный силовой агрегат представлен тремя основными вариантами:
- с непосредственным впрыском;
- с вихрекамерным впрыском;
- с предкамерным впрыском.
Вихрекамерный и предкамерный варианты предполагают впрыск топлива в специальную предварительную камеру цилиндра, где оно частично воспламеняется, а затем перемещается в основную камеру или собственно цилиндр. Здесь горючее, смешиваясь с воздухом, окончательно сгорает. Непосредственный же впрыск предполагает доставку топлива сразу же в камеру сгорания с последующим его смешиванием с воздухом и т.д.
Однако холодный двигатель не сможет обеспечить должный уровень температуры, требуемый для воспламенения смеси. И использованием свечей накаливания позволит осуществить необходимый подогрев камер сгорания.
Как работает топливная система дизельного двигателя
Как уже было сказано выше, в дизельном двигателе происходит самовоспламенение рабочей смеси топлива и воздуха. При этом сначала в цилиндр подается только воздух, затем этот воздух сильно сжимается и нагревается от сжатия. Чтобы произошло возгорание, дизтопливо (солярку) нужно подать ближе к концу такта сжатия.
С учетом того, что воздух сильно сжимается, горючее также необходимо впрыснуть под высоким давлением и эффективно распылить. В различных дизельных ДВС давление впрыска может отличаться, начиная, в среднем, с отметки в 100 атмосфер и заканчивая впечатляющим показателем более 2 тыс. атмосфер.
Для наиболее эффективной подачи топлива и обеспечения оптимальных условий для самовоспламенения заряда с последующим полноценным сгоранием смеси топливный впрыск реализован через дизельную форсунку. Получается, независимо от того, какой тип системы питания используется, в дизельных двигателях всегда присутствуют два основных элемента:
Другими словами, на многих дизелях давление создает ТНВД (топливный насос высокого давления), а подача дизтоплива в цилиндры происходит через форсунки. Что касается отличий, в разных системах топливоподачи насос может иметь ту или иную конструкцию, также по своему устройству отличаются и сами дизельные форсунки.
Еще системы питания могут отличаться по расположению тех или иных составных элементов, имеют разные схемы управления и т.д. Давайте рассмотрим системы впрыска дизельных двигателей более подробно.
Виды форсунок
Форсунки различаются в зависимости от способа осуществления впрыска топлива. Давайте рассмотрим основные виды форсунок:
- Электромагнитные форсунки;
- Электрогидравлические форсунки;
- Пьезоэлектрические форсунки.
Устройство электромагнитной форсунки
1 — сетчатый фильтр; 2 — электрический разъем; 3 – пружина; 4 — обмотка возбуждения; 5 — якорь электромагнита; 6 — корпус форсунки; 7 — игла форсунки; 8 – уплотнение; 9 — сопло форсунки.
Электромагнитная форсунка нашла свое применение на бензиновых двигателях, в том числе оборудованных системой непосредственного впрыска. Электромагнитной форсунка имеет простую конструкцию, которая включает электромагнитный клапан с иглой и соплом.
Как работает электромагнитная форсунка
Работа электромагнитной форсунки осуществляется в соответствии с заложенным алгоритмом в электронный блок управления. Электронный блок в определенный момент подает напряжение на обмотку возбуждения клапана. Вследствие этого создается электромагнитное поле, которое преодолевая усилие пружины, втягивает якорь с иглой и освобождает сопло форсунки, после чего производится впрыск топлива. Когда напряжение исчезает, пружина возвращает иглу форсунки обратно на седло.
Устройство электрогидравлической форсунки
1 — сопло форсунки; 2 – пружина; 3 — камера управления; 4 — сливной дроссель; 5 — якорь электромагнита; 6 — сливной канал; 7 — электрический разъем; 8 — обмотка возбуждения; 9 — штуцер подвода топлива; 10 — впускной дроссель; 11 – поршень; 12 — игла форсунки.
Электрогидравлическая форсунка применяется на дизельных двигателях. Электрогидравлическая форсунка включает электромагнитный клапан, камеру управления, впускной и сливной дроссели.
Как работает электрогидравлическая форсунка
Работа электрогидравлической форсунки основана на использовании давления топлива при впрыске. В обычном положении электромагнитный клапан закрыт и игла форсунки прижата к седлу силой давления топлива на поршень в камере управления. Давление топлива на иглу меньше давления на поршень, благодаря этому впрыск топлива не происходит.
Когда электронный блок управления дает команду на электромагнитный клапан, открывается сливной дроссель. Топливо вытекает из камеры управления через сливной дроссель в сливную магистраль. Впускной дроссель препятствует выравниванию давлений в камере управления и впускной магистрали, вследствие чего давление на поршень снижается, а давление топлива на иглу форсунки не изменяется. Игла форсунки поднимается и происходит впрыск топлива.
Устройство пьезоэлектрической форсунки
1 — игла форсунки; 2 – уплотнение; 3 — пружина иглы; 4 — блок дросселей; 5 — переключающий клапан; 6 — пружина клапана; 7 — поршень клапана; 8 — поршень толкателя; 9 – пьезоэлектрический элемент; 10 — сливной канал; 11 — сетчатый фильтр; 12 — электрический разъем; 13 — нагнетательный канал.
Пьезофорсунка (пьезоэлектрическая форсунка) является самым совершенным устройством, обеспечивающим впрыск топлива в современных автомобилях. Форсунка применяется на дизельных двигателях с системой впрыска Common Rail. Основные преимущества пьезоэлектрической форсунки в точности дозировки и быстроте срабатывания. Благодаря этому пьезофорсунка обеспечивает многократный впрыск на протяжении одного рабочего цикла.
Как работает пьезофорсунка (пьезоэлектрическая форсунка)
Работа пьезофорсунки основана на изменении длины пьезокристалла при подачи напряжения. Пьезоэлектрическая форсунка состоит из: корпуса, пьезоэлемента, толкателя, переключающего клапана и иглы.
Пьезофорсунка работает по гидравлическому принципу. В обычном положении игла прижата к седлу силой высокого давления топлива. Электронный блок подает электрический сигнал на пьезоэлемент и его длина увеличивается, воздействуя на поршень толкателя, открывает переключающий клапан и топливо поступает в сливную магистраль. Давление над иглой падает, и за счет давления в нижней части игла поднимается, что приводит к впрыску топлива. Количество впрыскиваемого топлива зависит от длительности воздействия на пьезоэлемент и давления топлива в топливной рампе.
Общие сведения
Как правило, большая часть систем впрыска схожи между собой, принципиальное различие может заключаться в смесеобразовании.
Основные элементы топливных систем, вне зависимости от того, о бензиновых или дизельных двигателях идет речь:
- Бак, в котором хранится горючее. Бак представляет собой емкость, оснащенную насосным устройством, а также фильтрующим элементом для очистки горючего от грязи.
- Топливные магистрали представляют собой набор патрубков и шлангов, предназначенный для подачи топлива из бака в двигатель.
- Узел смесеобразования, предназначенный для образования горючей смеси, а также дальнейшей ее передачи в цилиндры, в соответствии с тактом работы силового агрегата.
- Управляющий модуль. Он используется в инжекторных моторах, это связано с необходимостью контроля различных датчиков, клапанов и форсунок.
- Сам насос. Как правило, в современных авто применяются погружные варианты. Такой насос представляет собой небольшой по размерам и мощности электромотор, подключенный к жидкостному насосу. Смазка устройства реализуется с помощью топлива. Если в бензобаке будет менее пяти литров горючего, это может привести к поломке мотора.
СПТ на моторе ЗМЗ-40911.10
Виды форсунок
Форсунки различаются в зависимости от способа осуществления впрыска топлива. Давайте рассмотрим основные виды форсунок:
- Электромагнитные форсунки;
- Электрогидравлические форсунки;
- Пьезоэлектрические форсунки.
Устройство электромагнитной форсунки
1 — сетчатый фильтр; 2 — электрический разъем; 3 – пружина; 4 — обмотка возбуждения; 5 — якорь электромагнита; 6 — корпус форсунки; 7 — игла форсунки; 8 – уплотнение; 9 — сопло форсунки.
Электромагнитная форсунка нашла свое применение на бензиновых двигателях, в том числе оборудованных системой непосредственного впрыска. Электромагнитной форсунка имеет простую конструкцию, которая включает электромагнитный клапан с иглой и соплом.
Как работает электромагнитная форсунка
Работа электромагнитной форсунки осуществляется в соответствии с заложенным алгоритмом в электронный блок управления. Электронный блок в определенный момент подает напряжение на обмотку возбуждения клапана. Вследствие этого создается электромагнитное поле, которое преодолевая усилие пружины, втягивает якорь с иглой и освобождает сопло форсунки, после чего производится впрыск топлива. Когда напряжение исчезает, пружина возвращает иглу форсунки обратно на седло.
Устройство электрогидравлической форсунки
1 — сопло форсунки; 2 – пружина; 3 — камера управления; 4 — сливной дроссель; 5 — якорь электромагнита; 6 — сливной канал; 7 — электрический разъем; 8 — обмотка возбуждения; 9 — штуцер подвода топлива; 10 — впускной дроссель; 11 – поршень; 12 — игла форсунки.
Электрогидравлическая форсунка применяется на дизельных двигателях. Электрогидравлическая форсунка включает электромагнитный клапан, камеру управления, впускной и сливной дроссели.
Как работает электрогидравлическая форсунка
Работа электрогидравлической форсунки основана на использовании давления топлива при впрыске. В обычном положении электромагнитный клапан закрыт и игла форсунки прижата к седлу силой давления топлива на поршень в камере управления. Давление топлива на иглу меньше давления на поршень, благодаря этому впрыск топлива не происходит.
Когда электронный блок управления дает команду на электромагнитный клапан, открывается сливной дроссель. Топливо вытекает из камеры управления через сливной дроссель в сливную магистраль. Впускной дроссель препятствует выравниванию давлений в камере управления и впускной магистрали, вследствие чего давление на поршень снижается, а давление топлива на иглу форсунки не изменяется. Игла форсунки поднимается и происходит впрыск топлива.
Устройство пьезоэлектрической форсунки
1 — игла форсунки; 2 – уплотнение; 3 — пружина иглы; 4 — блок дросселей; 5 — переключающий клапан; 6 — пружина клапана; 7 — поршень клапана; 8 — поршень толкателя; 9 – пьезоэлектрический элемент; 10 — сливной канал; 11 — сетчатый фильтр; 12 — электрический разъем; 13 — нагнетательный канал.
Пьезофорсунка (пьезоэлектрическая форсунка) является самым совершенным устройством, обеспечивающим впрыск топлива в современных автомобилях. Форсунка применяется на дизельных двигателях с системой впрыска Common Rail. Основные преимущества пьезоэлектрической форсунки в точности дозировки и быстроте срабатывания. Благодаря этому пьезофорсунка обеспечивает многократный впрыск на протяжении одного рабочего цикла.
Как работает пьезофорсунка (пьезоэлектрическая форсунка)
Работа пьезофорсунки основана на изменении длины пьезокристалла при подачи напряжения. Пьезоэлектрическая форсунка состоит из: корпуса, пьезоэлемента, толкателя, переключающего клапана и иглы.
Пьезофорсунка работает по гидравлическому принципу. В обычном положении игла прижата к седлу силой высокого давления топлива. Электронный блок подает электрический сигнал на пьезоэлемент и его длина увеличивается, воздействуя на поршень толкателя, открывает переключающий клапан и топливо поступает в сливную магистраль. Давление над иглой падает, и за счет давления в нижней части игла поднимается, что приводит к впрыску топлива. Количество впрыскиваемого топлива зависит от длительности воздействия на пьезоэлемент и давления топлива в топливной рампе.
Виды систем впрыска дизельных ДВС
Основные виды СПТ в дизельных двигателях:
- Насос-форсунки. Такие СПТ используются для подачи, а также дальнейшего впрыска образованной эмульсии под высоким давлением с помощью насос-форсунок. Основной особенностью таких СПТ является то, что насос-форсунки выполняют опции образования давления, а также непосредственно впрыска. Такие СПТ имеют и свои недостатки, в частности, речь идет о насосе, оборудованном специальным приводом постоянного тип от распределительного вала силового агрегата. Этот узел является не отключаемым, соответственно, он способствует повышенному износу конструкции в целом.
- Именно из-за последнего недостатка большинство производителей отдают предпочтение СПТ типа Common Rail или аккумуляторного впрыска. Такой вариант считается более совершенным для многих дизельных агрегатов. СПТ имеет такое название в результате использования топливной рамы — основного элемента конструкции. Рампа используется одна для всех форсунок. В данном случае подача топлива осуществляется к форсункам от самой рампы, она может называться аккумулятором повышенного давления. Подача горючего осуществляется в три этапа — предварительный, основной, а также дополнительный. Такое распределение дает возможность снизить шум и вибрации при работе силового агрегата, сделать его работу более эффективной, в частности, речь идет о процессе возгорания смеси. Кроме того, это также позволяет и снизить объем вредоносных выбросов в окружающую среду.
Вне зависимости от вида СПТ, дизельные агрегаты тоже управляются с помощью электронных либо механических устройств. В механических вариантах устройства контролируют уровень давления и объема составляющих смеси и момента впрыска. Что касается электронных вариантов, то они позволяют обеспечить более эффективное управление силовым агрегатом.
Загрузка …
Система впрыска бензина, устройство систем впрыска топлива бензиновых двигателей
Система впрыска топлива — составная часть топливной системы ТС. Основной рабочий орган любой системы впрыска — форсунка. Зависимо от метода образования воздушнотопливной смеси существуют системы непосредственного впрыска, распределенного впрыска и центрального впрыска. Системы распределенного и центрального впрыска — системы предварительного впрыска, то есть впрыск в них осуществляется во впускном коллекторе, не доходя до камеры сгорания.
Системы впрыска бензиновых моторов могут иметь электронное либо механическое управление. Самым совершенным считается электронное управление впрыском, которое обеспечивает существенную экономию горючего и снижение вредных выбросов в атмосферу.
Впрыск горючего в системе осуществляется импульсно (дискретно) или непрерывно. С точки зрения экономии перспективным считается импульсный впрыск горючего, используемый всеми современными системами.
В моторе система впрыска, как правило, соединена с системой зажигания и создает объединенную систему зажигания и впрыска (к примеру, системы Fenix, Motronic). Система управления мотором обеспечивает согласованную работу систем.