Классификация двигателей
Конструкция ДВС бывает различной. Каждый разработчик мотора пытается внести свои улучшения, повысить мощность и экономичность, снизить выбросы вредных веществ и стоимость агрегата. Давайте посмотрим, по каким критериям классифицируют двигатели внутреннего сгорания.
По рабочему циклу
Рабочий цикл ДВС — это последовательность процессов внутри каждого цилиндра, в результате которой энергия топлива превращается в механическую энергию. Цикл может быть двухтактным или четырехтактным:
- четырёхтактный мотор работает по «циклу Отто» или Аткинсона и включает в себя такты: впуск, сжатие, рабочий ход и выпуск;
- в двухтактном ДВС впуск и сжатие происходят одновременно за один такт, а рабочий ход переходит в выпуск на втором такте.
По типу конструкции
По конструкции ДВС делятся на:
- поршневые, в которых расширяющиеся при сгорании газы приводят в движение поршень, который в свою очередь толкает коленвал;
- роторные.Растущее давление газов воздействует на ротор, соединённый с корпусом через зубчатую передачу. Роторный мотор не имеет ГРМ. Его функции выполняют впускные и выпускные окна в боковых стенках корпуса;
- газовые турбины. В этих двигателях внутреннего сгорания газы с высокой скоростью попадают на лопатки силовой турбины, которая соединяется через редуктор с трансмиссией. Для нагнетания воздуха в мотор установлен турбинный компрессор.
Моторы могут быть без наддува, с турбокомпрессором или нагнетателем. Конструкция подбирается под назначение двигателя: будь то стационарная установка или транспорт.
По количеству цилиндров
Одно цилиндровые двигатели работают неравномерно, что не критично для лодочных моторов, мопедов и мотоциклов. Двигатель автомобиля устроен сложнее, поскольку нужна высокая мощность, а значит и большой объём цилиндра. Так, в транспорте малого класса применяются 4-цилиндровые моторы. В грузовые автомобили ставят 6- и 8-цилиндровые ДВС.
По принципу создания рабочей смеси
Принцип работы двигателя внутреннего сгорания различается способами смесеобразования:
- внешнее: в карбюраторных моторах и в агрегатах с впрыском топлива во впускной коллектор;
- внутреннее: в дизельных двигателях и бензиновых с непосредственным впрыском в камеру сгорания.
По расположению цилиндров
Поршневые двигатели автомобиля различаются компоновочной схемой блока цилиндров и могут представлять собой конструкцию:
- рядную;
- V-образную;
- оппозитную с углом развала между поршнями 180°;
- VR-образную;
- W -образную.
Похожая статья Двигатель 1AZFE: ресурс, характеристики и проблемы
В зависимости от компоновки моторы устанавливаются в подкапотное пространство вертикально, горизонтально или под углом к вертикальной плоскости для уменьшения высоты конструкции.
По типу топлива
Работа двигателя внутреннего сгорания происходит за счёт сжигания смеси воздуха с бензином, газа или дизеля. В качестве газового топлива ДВС применяются углеводород, сжиженный газ, смесь пропана и бутана, метан, водород.
По принципу работы ГРМ
Выше мы рассматривали, что ГРМ может быть устроен по схеме OHV, ОНС или DОНС. Выбор компоновки влияет на принцип работы двигателя. Также приводы клапанов различаются способами регулировки тепловых зазоров, которые увеличиваются в результате нагрева конструкции. Настройку зазоров проводят вручную, меняя специальные винты в коромыслах, или устанавливают гидрокомпенсаторы для автоматической регулировки.
Как Отто двигатель разрабатывал
Агрегат, изобретенный ученым по имени Альфонс Бо де Роша, а затем построенный немецким инженером Николаусом Отто в 1867 году, в те годы считался максимумом технологичности и практически совершенством. Аналогов для него просто не существовало. Мотор был очень недорогим в эксплуатации, имел компактные размеры, а также ему не нужно было частое обслуживание.
Работа четырехтактного двигателя была построена по четкому алгоритму. Сегодня его называют «циклом Отто». В 1875 г. Николаус Отто в своей компании выпускал больше, чем 600 двигателей за год.
Читать также: Подшипник как определить размер
Управление карбюратором
Как правило, действиями карбюратора руководит водитель автомобиля. На отдельных моделях карбюраторов применялись вспомогательные системы, которые немного автоматизировали управление карбюратором.
Для того чтобы управлять дроссельной заслонкой наиболее часто пользуются педалью газа, которая обуславливает ее подвижность при содействии системы тяг либо тросового привода. Тяга, как правило, лучше, однако механизм привода куда сложнее и сдерживает способность механизма по компоновке подкапотной площади. Привод тягами был популярен до 1970 года, потом стали чаще использоваться тросики из металла.
На старых машинах чаще предполагалась двойная система привода дроссельной заслонки карбюратора: вручную рычагом либо от ноги, при помощи педали. Если надавливать на педаль, то рычаг не двигается, а если перемещать рычаг, то педаль опускается.
Последующее открытие дросселя можно совершать педалью. Когда педаль опускается — дроссель остается в таком же положении, в котором зафиксировался при управлении рукой. К примеру, на «Волге» ГАЗ-21 на панели приборов был размещен рычаг для управления рукой, при его движении можно достичь постоянного функционирования холодного двигателя без действия воздушной заслонки либо применять «постоянный газ». На грузовиках «постоянный газ» применялся для облегчения передвижения задним ходом.
Воздушная заслонка может быть оснащена механическим либо автоматическим приводом. Если привод механический, то водитель закрывает ее при участии рычага. Автоматический привод очень популярен в других странах, а в России не «прижился» из-за своей ненадежности и недолгим сроком службы.
Одноцилиндровый двигатель – это… Что такое Одноцилиндровый двигатель?
Двигатель — 8.1. Двигатель (привести характеристики) Изготовитель и модель С воспламенением от сжатия или с искровым зажиганием Тактность (двух или четырехтактный) С естественным всасыванием, механическим наддувом или газотурбонаддувом Число цилиндров… … Словарь-справочник терминов нормативно-технической документации
Двигатель Ванкеля — Роторно поршневой двигатель в разрезе. Роторно поршневой двигатель внутреннего сгорания (РПД, двигатель Ванкеля), конструкция которого разработана в 1957 инженером компании NSU Вальтером Фройде (англ.), ему же принадлежала идея этой конструкции.… … Википедия
одноцилиндровый — ая, ое. Техн. Имеющий один цилиндр; работающий на одном цилиндре. О. двигатель … Энциклопедический словарь
одноцилиндровый — ая, ое.; техн. Имеющий один цилиндр; работающий на одном цилиндре. Одноцили/ндровый двигатель … Словарь многих выражений
ДИЗЕЛЬ (двигатель) — ДИЗЕЛЬ, поршневой двигатель внутреннего сгорания, работающий на жидком топливе с воспламенением от сжатия. Топливо впрыскивается в цилиндр двигателя в конце сжатия и воспламеняется от высокой температуры сжатого воздуха. Дизели отличаются… … Энциклопедический словарь
Двухтактный двигатель — … Википедия
Дизельный двигатель — Дизельный двигатель поршневой двигатель внутреннего сгорания, работающий по принципу самовоспламенения распылённого топлива от воздействия разогретого при сжатии воздуха. Спектр топлива для дизелей весьма широк, сюда включаются все… … Википедия
Ванкеля двигатель — Роторно поршневой двигатель в разрезе. Роторно поршневой двигатель внутреннего сгорания (РПД, двигатель Ванкеля), конструкция которого разработана в 1957 инженером компании NSU Вальтером Фройде (англ.), ему же принадлежала идея этой конструкции.… … Википедия
V-образный восьмицилиндровый двигатель — У этого термина существуют и другие значения, см. V8 (значения). V8 Chevrolet ZF V образный 8 цилиндровый двигатель двигатель внутреннего сгорания с … Википедия
V8 двигатель — V8 Chevrolet ZF V образный 8 цилиндровый двигатель двигатель внутреннего сгорания с V образным расположением восьми цилиндров двумя рядами по четыре, и поршнями, вращающими один общий коленчатый вал. Часто обозначается V8 (англ. «Vee Eight», «Ви… … Википедия
Где применяется
4-х тактные моторы применяются в нашей повседневной жизни очень широко. Их мощность напрямую зависит от объема и количества цилиндров. Устанавливают ДВС в автомобилях и самолетах, тракторах и тепловозах. Применяются они также на судах морского и речного флота.
На 4-х тактные силовые агрегаты обратили внимание и энергетики. Используют их для питания стационарных и аварийных электрогенераторов, установленных в местах, где линии электропередач подвести невозможно или экономически нецелесообразно. Кроме того, такие генераторы устанавливают на объектах, где отключение подачи электроэнергии невозможно (больницы, банки, воинские части и пр.)
Кроме того, такие генераторы устанавливают на объектах, где отключение подачи электроэнергии невозможно (больницы, банки, воинские части и пр.).
Одноцилиндровый четырехтактный бензиновый двигатель принцип работы.
Одноцилиндровый четырехтактный бензиновый двигатель принцип работы.
Подробности В наше время на автомобилях используются четырехтактные многоцилиндровые двигатели. Для того, чтобы вы могли самостоятельно ремонтировать двигатель и определять характер неисправности, вначале необходимо узнать его устройство и принцип работы. Для того чтобы представить как же он все таки работает, рассмотрим принцип работы одноцилиндрового четырехтактного бензинового двигателя. Отличие у них только в количестве цилиндров.
Рис 1 – Одноцилиндровый четырехтактный бензиновый двигатель в разрезе.
1 – глушитель. 2 – пружина клапана. 3 – карбюратор. 4 – впускной клапан. 5 – поршень. 6 — свеча зажигания. 7 – выпускной клапан. 8 – шатун. 9 – маховик. 10 – распределительный вал. 11 – коленчатый вал.
- Принцип работы одноцилиндрового четырехтактного двигателя следующий:
- Такт впуска. Такт – это процесс, происходящий в цилиндре за один ход поршня. Рис 2 – Такт впуска.
1 – впускной клапан. 2 – свеча зажигания. 3 – выпускной клапан. 4 – шатун.
Направление вращения коленчатого вала происходит по часовой стрелке. Вначале поршень у нас находится в верхней мертвой точке ВМТ. За первый такт коленчатый вал совершает пол оборота (180 градусов), тем самым перемещая поршень из ВМТ в нижнюю мертвую точку НМТ. Когда поршень перемещается вниз, у нас в цилиндре создается разряжение. Одновременно с перемещением поршня открывается впускной клапан 1, в конце первого такта клапан откроется полностью. Благодаря создавшемуся разряжению в цилиндре засасывается горючая смесь, которая представляет собой смешанные пары бензина с воздухом. Не забываем, что в цилиндре у нас еще присутствуют продукты сгорания от предыдущего цикла. В итоге это все смешивается и у нас получается рабочая смесь. Подробнее о такте впуска.
- Такт сжатия. Рис 3 — Такт сжатия.
Следующий оборот на 180 градусов приводит перемещение из НМТ в ВМТ. В этом такте оба клапана у нас закрыты, что приводит рабочую смесь к сжатию и повышению давления до 1.8 МПа и температуры 600 градусов Цельсия. Подробнее о такте сжатия.
- Такт расширение. Рабочий ход. Рис 4 — Такт расширение. Рабочий ход.
По окончанию сжатия происходит воспламенение рабочей смеси от искры создаваемой свечей 2 и ее сгорание. Что приводит к увеличению температуры до 2500 градусов Цельсия и давления до 5 МПа. За счет резкого повышения давления, поршень начинает перемещаться вниз, толкая шатун 4, который в свою очередь совершает вращательное действие на коленчатый вал. В этом такте совершается полезная работа, тепловая энергия преобразуется в механическую. При подходе поршня к НМТ начинает открываться выпускной клапан 3, через который отводятся отработанные газы. В результате температура у нас падает до 1200 градусов, а давление до 0.65 МПа. Подробнее о такте рабочего хода.
- Такт выпуска. Рис 5 – Такт выпуска.
В этом такте у нас полностью открывается выпускной клапан 3. Поршень перемещается из нижней мертвой точки в высшую, выталкивая отработанные газы. Далее газы попадают в выпускной коллектор, затем пройдя через глушитель в атмосферу. В конце такта температура в цилиндре падает до 500 градусов, а давление до 0.1 МПа. Полностью цилиндр от отработанных газов не освобождается, какой-то их процент остается и участвует в последующем такте. Подробнее о такте выпуска.
В процессе работы двигателя все перечисленные такты повторяются циклически. При 3 такте, где совершается рабочий ход поршня, механическая энергия от коленвала передается маховику, которую он накапливает и использует ее в последующих тактах. Благодаря маховику работа двигателя становится ровной и устойчивой.
avto-master.info
Отличие двухтактного двигателя от четырёхтактного
Авто владельцы задаются вопросом: что лучше двухтактный или четырехтактный двигатель. Однозначного ответа нет, у каждого механизма положительные и отрицательные стороны, зависящие от предъявляемых к мотору требований.
Казалось бы, мощность мотора выполняющего два такта, в сравнении с равнозначным мотором, выполняющим четыре такта, больше, а значит он лучше. Однако, реальность сложней. На практике, возникают дополнительные утраты: частичное попадание и смешивание газовой отработки со свежим горючим, выброс части топлива при продувке. Результат, при выполнении одинакового цикла, агрегат, выполняющий два такта, по показателю экономичности уступает агрегату с четырьмя тактами.
Различен способ смазки силовых установок на четыре и два такта. Установка на два такта смазывается посредством смешивания масла для мотора и бензина. В четырёхтактном агрегате предусмотрен механизм смазки с использованием насоса, который расходует масла столько, сколько требует эксплуатация установки.
Двухтактные моторы не имеют клапанов, роль детали играет поршень, он открывает и закрывает отверстия впуска и выпуска. Отсутствие механизмов газораспределения упрощает силовой агрегат, делая обслуживание простым. Мощность установки, выполняющей два такта, считается выше, так как её цикличность выше. Однако, не полностью используя поршневой ход, потери мощности при продувке и остатках отработанных газов снижают показатель мощности.
Что бы было легче определить, какой двигатель лучше, двухтактный или четырёхтактный, представим краткое описание обоих силовых установок в виде таблицы:
Четырёхтактная силовая установка | Двухтактная силовая установка |
Рабочий процесс – оборотов коленчатого вала два. | Рабочий процесс — оборотов коленчатого вала один. |
Воспламенение рабочей жидкости происходит каждый раз при совершении второго оборота, как следствие, неравномерное распределение импульса и использование противовеса для устранения биений. | Воспламенение рабочей жидкости происходит каждый раз при совершении оборота, как следствие, равномерное распределение импульса, работа мотора сбалансирована лучше. |
Агрегат тяжёлый. | Агрегат лёгкий. |
Сложная конструкция силовой установки, присутствует газораспределительный механизм. | Простота конструкции, отсутствие клапанов. |
Агрегат дорогой. | Стоимость ниже четырёхтактного. |
Сложные устройства и механизмы приводят к заниженному показателю механического коэффициента полезного действия. | Механический коэффициент полезного действия выше, чем у агрегата с четырьмя тактами. |
Полное удаление паров отработки, следствие, повышенный показатель производительности. | Остатки отработки смешиваются с новым горючим, из-за чего производительность мотора ниже. |
Рабочая температура ниже. | Рабочая температура мотора выше из-за нарушения смесеобразования. |
Охлаждение жидкостное. | Охлаждение воздушное. |
Расход топлива ниже. | Показатель расхода топлива увеличен, обусловлено смесеобразованием и продувкой. |
Габариты силовой установки увеличены. | Габариты силовой установки ниже. |
Требует применения сложных механизмов смазки. | Механизм смазки прост. |
Работа агрегата менее шумная. | Агрегат работает с большим шумом. |
Клапанный механизм газораспределения. | Функцию механизма газораспределения выполняет поршень и каналы. |
Показатель использования тепла эффективен. | Показатель использования тепла не эффективен. |
Расход масла занижен. | Показатель расхода масла завышен, поскольку часть смазки выбрасывается с отработанными газами. |
Применять двигатель, выполняющий два такта при работе, целесообразно в моменты, когда речь не идёт об экономии топлива и смазки, а на первом месте стоят габариты и вес установки.
В то же время, в конструкции двухтактного двигателя кроется потенциал, который никак не удается реализовать на практике. Расчетный показатель мощности и экономичности в этом агрегате высок, сложность реализовать возникает из-за тонкости настроек. Возможно, в скором будущем благодаря применению электронных датчиков и механизмов контроля и настроек, двухтактным агрегатам удастся занять лидирующие позиции на автомобильном рынке.
Устройство двигателя автомобиля
Для того, чтобы понять принцип работы двигателя, нужно иметь некоторые представления о самом двигателе и его строении.
В устройстве двигателя поршень является ключевым элементом рабочего процесса. Поршень выполнен в виде металлического пустотелого стакана, расположенного сферическим дном (головка поршня) вверх. Направляющая часть поршня, иначе называемая юбкой, имеет неглубокие канавки, предназначенные для фиксации в них поршневых колец. Назначение поршневых колец – обеспечивать, во-первых, герметичность надпоршневого пространства, где при работе двигателя происходит мгновенное сгорание бензиново-воздушной смеси и образующийся расширяющийся газ не мог, обогнув юбку, устремиться под поршень. Во-вторых, кольца предотвращают попадание масла, находящегося под поршнем, в надпоршневое пространство. Таким образом, кольца в поршне выполняют функцию уплотнителей. Нижнее (нижние) поршневое кольцо называется маслосъемным, а верхнее (верхние) – компрессионным, то есть обеспечивающим высокую степень сжатия смеси.
Когда из карбюратора или инжектора внутрь цилиндра попадает топливно-воздушная или топливная смесь, она сжимается поршнем при его движении вверх и поджигается электрическим разрядом от свечи системы зажигания (в дизеле происходит самовоспламенение смеси за счет резкого сжатия). Образующиеся газы сгорания имеют значительно больший объем, чем исходная топливная смесь, и, расширяясь, резко толкают поршень вниз. Таким образом тепловая энергия топлива преобразуется в возвратно-поступательное (вверх-вниз) движение поршня в цилиндре.
Далее необходимо преобразовать это движение во вращение вала. Происходит это следующим образом: внутри юбки поршня расположен палец, на котором закрепляется верхняя часть шатуна, последний шарнирно зафиксирован на кривошипе коленчатого вала. Коленвал свободно вращается на опорных подшипниках, что расположены в картере двигателя внутреннего сгорания. При движении поршня шатун начинает вращать коленвал, с которого крутящий момент передается на трансмиссию и – далее через систему шестерен – на ведущие колеса.
Технические характеристики двигателя.
При движении вверх-вниз у поршня есть два положения, которые называются мертвыми точками. Верхняя мертвая точка (ВМТ) – это момент максимального подъема головки и всего поршня вверх, после чего он начинает движение вниз; нижняя мертвая точка (НМТ) – самое нижнее положение поршня, после которого вектор направления меняется и поршень устремляется вверх. Расстояние между ВМТ и НМТ названо ходом поршня, объем верхней части цилиндра при положении поршня в ВМТ образует камеру сгорания, а максимальный объем цилиндра при положении поршня в НМТ принято называть полным объемом цилиндра. Разница между полным объемом и объемом камеры сгорания получила наименование рабочего объема цилиндра.
Суммарный рабочий объем всех цилиндров двигателя внутреннего сгорания указывается в технических характеристиках двигателя, выражается в литрах, поэтому в обиходе именуется литражом двигателя. Второй важнейшей характеристикой любого ДВС является степень сжатия (СС), определяемая как частное от деления полного объема на объем камеры сгорания. У карбюраторных двигателей СС варьирует в интервале от 6 до 14, у дизелей – от 16 до 30. Именно этот показатель, наряду с объемом двигателя, определяет его мощность, экономичность и полноту сгорания топливо-воздушной смеси, что влияет на токсичность выбросов при работе ДВС. Мощность двигателя имеет бинарное обозначение – в лошадиных силах (л.с.) и в киловаттах (кВт). Для перевода единиц одна в другую применяется коэффициент 0,735, то есть 1 л.с. = 0,735 кВт.
Рабочий цикл четырехтактного ДВС определяется двумя оборотами коленчатого вала – по пол-оборота на такт, соответствующий одному ходу поршня. Если двигатель одноцилиндровый, то в его работе наблюдается неравномерность: резкое ускорение хода поршня при взрывном сгорании смеси и замедление его по мере приближения к НМТ и далее. Для того, чтобы эту неравномерность купировать, на валу за пределами корпуса мотора устанавливается массивный диск-маховик с большой инерционностью, благодаря чему момент вращения вала во времени становится более стабильным.
РЕКОМЕНДУЕМ ТАКЖЕ ПРОЧИТАТЬ: |
Как устроен и работает четырехтактный движок
Работа 4 тактного двигателя позволяет вращать коленчатый вал, который через кривошипно-шатунный механизм передает движение на колесный привод транспортного средства. Простейшая одноцилиндровая конструкция состоит из:
- металлического корпуса, состоящего из крышки и блока цилиндров;
- цилиндра, внутри которого вверх и вниз перемещается поршень;
- впускного и выпускного клапанов, подающих в камеру сгорания топливную смесь и отводящих отработанные газы;
- поршня, который сжимает топливную смесь, провоцируя воспламенение, а также проворачивает маховик коленчатого вала и, соответственно, колеса транспортного средства;
- свечи зажигания, подающей в цилиндр искру, поджигающую горючую смесь (на бензиновых моделях);
- системы подачи масла внутрь силового агрегата для смазки и охлаждения движущихся частей;
- контура жидкостного охлаждения, отводящего излишнее от мотора излишнее тепло.
Одноцилиндровый четырехтактный ДВС в разрезе.
Как работает четырехтактный двигатель:
- Впуск (от 0 до 180о проворота кривошипа): поршень опускается до нижней мертвой точки (НМТ), одновременно с этим открывается впускное отверстие и в движок поступает смесь топлива и кислорода.
- Сжатие (от 180 до 360о): поршень поднимается до верхней мертвой точки (ВМТ), сжимая находящуюся внутри топливную смесь.
- Рабочий ход (от 360 до 540о): топливо внутри цилиндра воспламеняется от свечи зажигания (либо от температуры — на дизелях) и поршень силой получившегося взрыва снова отбрасывается вниз. Третий такт называется рабочим, потому что именно в нем поршень совершает полезную работу, передавая коленвалу, и далее — на колесный привод крутящий момент (остальные такты ДВС происходят, наоборот, за счет движения кривошипно-шатунного механизма, поэтому фактический КПД движка такого типа составляет около 40%).
- Выпуск (от 540 до 720о проворота кривошипа): в это время открывается выпускное отверстие, и поршень снова поднимается до ВМТ, выталкивая отработанные газы в выхлопную систему.
Рабочий цикл четырехтактного бензинового двигателя.
В чем особенность дизельных силовых агрегатов
Все ДВС можно поделить на две группы по принципу смесеобразования:
- Бензиновые (карбюраторные или инжекторные) и газовые — в которых топливо смешивается с воздухом до попадания в цилиндр.
- Дизельные — топливо впрыскивается непосредственно в камеру сгорания.
Рабочий цикл четырехтактного двигателя на дизельных силовых агрегатах немного отличен от бензиновых. В камерах сгорания находится кислород, который нагрет до температуры, достаточной для воспламенения топлива. Перед тем, как поршень дойдет до верхней мертвой точки, в цилиндр впрыскивается жидкое дизтопливо, которое форсунки распыляют до мелких капель для более быстрой реакции с нагретым воздухом.
4 такта двигателя внутреннего сгорания на дизеле.
Многоцилиндровые модели
Чем больше цилиндров имеет четырехтактный двигатель, тем больше суммарный объем камер сгорания, поэтому силовые агрегаты на автомобилях оснащают несколькими цилиндрами. Чаще всего это число бывает четным, для обеспечения баланса установки, но встречаются и трехцилиндровые модели.
Классификация многоцилиндровых автомобильных моторов:
- Рядный — на одном коленчатом вале параллельно друг другу;
- V-образный — два ряда цилиндров на коленвале, расположенные под углом;
- VR-образный — аналогичен предыдущему, но имеет меньший угол развала (около 15о).
Рядный ДВС в разрезе.
Чтобы многоцилиндровый движок работал равномерно, такты различных цилиндров должны чередоваться в определенной последовательности и через равные промежутки времени. Примерный порядок работы четырехцилиндрового ДВС:
Порядок работы цилиндров на ВАЗ-2109.
От чего зависит мощность четырехтактного мотора
Основные параметры, оказывающие влияние на мощность силового агрегата, это:
- суммарный объем цилиндров;
- частота вращения коленчатого вала;
- пропускная способность впускных и выпускных отверстий;
- уровень сжатия топливной смеси.
Схема работы наддува турбированного мотора.
История
Патент 1904 года на двигатель с верхним расположением клапанов Buick.
Предшественники
Первые двигатели внутреннего сгорания были основаны на паровых двигателях и поэтому использовали золотниковые клапаны . Так было и с первым двигателем Отто , который впервые был успешно запущен в 1876 году. Поскольку двигатели внутреннего сгорания начали развиваться отдельно от паровых двигателей, тарельчатые клапаны стали все более распространенными, и большинство двигателей до 1950-х годов использовали боковой клапан (с плоской головкой) дизайн.
Начиная с Daimler Reitwagen 1885 года , в некоторых автомобилях и мотоциклах использовались впускные клапаны, расположенные в головке цилиндров, однако эти клапаны были с вакуумным приводом («атмосферным»), а не с приводом от распределительного вала, как в типичных двигателях OHV. Выпускной клапан (ы) приводился в действие распределительным валом, но находился в блоке двигателя, как и в двигателях с боковым клапаном.
В прототипе дизельного двигателя 1894 года использовались верхние тарельчатые клапаны, приводимые в действие распределительным валом, толкателями и коромыслами, поэтому он стал одним из первых двигателей OHV. В 1896 году Уильям Ф. Дэвис получил патент США 563 140 на двигатель с верхним расположением клапанов с жидкой охлаждающей жидкостью, используемой для охлаждения головки блока цилиндров. но работающей модели построено не было.
Серийные двигатели OHV
В 1898 году производитель велосипедов Уолтер Лоренцо Марр в США построил прототип моторизованного трехколесного велосипеда с одноцилиндровым двигателем с верхним расположением клапанов. Марра наняла компания Buick (тогда называвшаяся Buick Auto-Vim and Power Company ) в 1899–1902 годах, где конструкция двигателя с верхним расположением клапана была доработана. В этом двигателе использовались коромысла, приводимые в действие толкателями, которые, в свою очередь, открывали клапаны параллельно поршням. Марр вернулся в Buick в 1904 году (построив небольшое количество автомобилей Marr Auto-Car с первым известным двигателем, в котором использовался верхний распределительный вал), в том же году, когда Buick получил патент на конструкцию двигателя с верхним расположением клапанов. В 1904 году первый в мире производство OHV двигатель был выпущен в Buick Model B . Двигатель имел плоско-сдвоенную конструкцию с двумя клапанами на цилиндр. Этот двигатель оказался очень успешным для Buick: в 1905 году компания продала 750 таких автомобилей.
Несколько других производителей начали производить двигатели с верхним расположением клапанов, например, вертикальный 4-цилиндровый двигатель братьев Райт 1906–1912 гг . Однако двигатели с боковым расположением клапанов оставались обычным явлением до конца 1940-х годов, когда их начали постепенно выводить из эксплуатации для двигателей OHV.
Верхние кулачковые двигатели
Первый двигатель с верхним распределительным валом (OHC) появился в 1902 году, однако в течение многих десятилетий использование этой конструкции в основном ограничивалось высокопроизводительными автомобилями. Двигатели OHC постепенно стали более распространенными с 1950-х по 1990-е годы, и к началу 21-го века в большинстве автомобильных двигателей (за исключением некоторых североамериканских двигателей V8) использовалась конструкция OHC.
В 1994 году на автогонке Indianapolis 500 Team Penske участвовала в автомобиле с двигателем Mercedes-Benz 500I, изготовленным по индивидуальному заказу . Из-за лазейки в правилах двигателю с толкателем было разрешено использовать больший рабочий объем и более высокое давление наддува, что значительно увеличило его выходную мощность по сравнению с двигателями OHC, используемыми другими командами. Команда Penske квалифицировалась с поул-позицией и выиграла гонку с большим отрывом.
В начале 21 века несколько двигателей V8 с толкателем от General Motors и Chrysler использовали переменный рабочий объем для снижения расхода топлива и выбросов выхлопных газов. В 2008 году на Dodge Viper (четвертое поколение) был представлен первый серийный двигатель с толкателем, в котором используется система изменения фаз газораспределения .
Четыре такта: недостатки и достоинства
Основной и “жирный” плюс таких агрегатов – это экономичность. К тому же они не слишком шумные.
Еще одно преимущество – это, конечно же, высокая надежность. Ресурс может доходить до миллиона километров, и это далеко не предел. Ремонт четырехтактного двигателя нужно делать не так часто.
Среди недостатков – сложная конструкция, дорогое производство, требовательность в эксплуатации. Этим агрегатам обязательно нужно качественное топливо и масло. Осуществить ремонт самостоятельно практически невозможно.
Чтобы с этими моторами никогда не было проблем, «кормите» их только качественным бензином. И тогда они будут работать долго, надежно и исправно. Конструкция, которая столько лет не меняется, – это показатель надежности и эффективности.
Одноцилиндровый двигатель — Википедия
Материал из Википедии — свободной энциклопедии
Одноцилиндровый двигатель внутреннего сгорания — простейший поршневой двигатель внутреннего сгорания, имеющий всего один рабочий цилиндр. Одноцилиндровый двигатель является полностью несбалансированным и имеет неравномерный ход. Одноцилиндровые двигатели характеризуются наименьшим отношением площади поверхности рабочего цилиндра к рабочему объёму по сравнению с многоцилиндровыми двигателями, что обеспечивает наименьшие потери тепла в рабочем процессе и высокий индикаторный к.п.д. В то же время одноцилиндровые двигатели характеризуются существенной большей тепловой и механической напряжённостью деталей по сравнению с многоцилиндровыми двигателями. Удельная масса одноцилиндровых двигателей выше чем у многоцилиндровых такого же рабочего объёма.
В прошлом одноцилиндровые двигатели (благодаря простоте устройства) были широко распространены а их рабочий объём был практически не ограничен сверху — на судах и в стационарных установках встречались малооборотистые одноцилиндровые двигатели с рабочим объёмом до 12 л (например дизельный калоризаторный двигатель «Пионер» мощностью 33 кВт, выпущенный на заводе «Русский дизель»). В настоящее время распространение одноцилиндровых двигателей также достаточно широко, по причине их простоты, малой стоимости и малой массы, но рабочий объём ограничен.
Наименьшим рабочим объёмом характеризуются одноцилиндровые двигатели для авиамоделей — 1 см³ — 10 см³. Бензиновые двухтактные двигатели ручных газонокосилок (триммеров) имеют рабочий объём 15 см³ — 36 см³. На мотопилах применяются двигатели с рабочим объёмом 36 см³ — 100 см³. На мопедах применяются одноцилиндровые двигатели рабочим объёмом немного меньше 50 см³. Для привода небольших электрических генераторов применяют одноцилиндровые двигатели рабочим объёмом 60 см³ — 420 см³ (дизель Yanmar L100). На мотоциклах нашли применение одноцилиндровые двухтактные двигатели рабочим объёмом 125 см³ — 350 см³. Например, российский мотоцикл «ИЖ-Планета» имеет один из самых крупных в мире серийных одноцилиндровых двухтактных двигателей рабочим объёмом 346 см³. Четырёхтактные мотоциклетные двигатели обладают рабочим объёмом до 800см³(suzuki dr800).
Для тракторов ДТ-14 и самоходных шасси ДСШ-14 выпускался одноцилиндровый дизельный двигатель рабочим объёмом 1,03 л и мощностью 14 л.с. В Китае по состоянию на 2013 год продолжают выпускаться разработанные в 1930-х годах одноцилиндровые дизельные двигатели S1100 и S1115 рабочим объемом 905 см³ и 1194 см³ соответственно. Эти двигатели широко применяются для привода тяжелых мотоблоков и небольших тракторов.